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A simple planning problem for 
Covid-19 lockdown1

Fernando Alvarez,2 David Argente3 and Francesco Lippi4

Date submitted: 30 April 2020; Date accepted: 1 May 2020

We study the optimal lockdown policy for a planner who controls 
the fatalities of a pandemic while minimizing the output costs 
of the lockdown. The policy depends on the fraction of infected 
and susceptible in the population, prescribing a severe lockdown 
beginning two weeks after the outbreak, covering 60% of the 
population after a month, and gradually withdrawing to 20% of the 
population after 3 months. The intensity of the optimal lockdown 
depends on the gradient of the fatality rate with respect to the infected, 
and the availability of antibody testing that yields a welfare gain 
of 2% of GDP. We also analyze a test-tracing and quarantine (TTQ) 
policy. We find that TTQ is, in general, complementary to a lockdown.

1 We benefited from the comments of Andrew Atkeson, Gadi Barlevy, Mike Golosov, Fausto Gozzi, Francois 
Gourio, Lars Hansen, Kiminori Matsuyama, Magne Mogstad, Steve Mohr, Casey Mulligan, Tom Phelan, 
Filip Rozsypal, Fabiano Schivardi, Rob Shimer, Daniele Terlizzese, Fabrice Tourre, Marcelo Veracierto, Ivan 
Werning, and panelists and participants on the HELP! (Health and Pandemics Economics Group) seminar, the 
World Bank's Development Policy and Covid-19 e-seminar, the Federal Reserve Bank of Chicago Virtual Macro 
Seminar. The authors declare to have no conflict of interest to disclose regarding the research on this paper.

2 Saieh Family Professor in Economics, University of Chicago.
3 Assistant Professor of Economics, Penn State University.
4 Professor, Luiss University and Senior Fellow, Einaudi Institute of Economics and Finance.
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1 Introduction and Overview

We adopt a variation of the SIR epidemiology model reviewed by Atkeson (2020) and

Neumeyer (2020) to analyze the optimal control model for the COVID19 epidemic. Our aim

is to contribute to the ongoing discussion on the optimal policy response to the COVID19

shock, see Barro, Ursua, and Weng (2020); Eichenbaum, Rebelo, and Trabandtz (2020);

Hall, Jones, and Klenow (2020); Dewatripont et al. (2020); Piguillem and Shi (2020); Jones,

Philippon, and Venkateswaran (2020) and the contributions in the volume by Baldwin and

Weder (2020).

The typical approach in the epidemiology literature is to study the dynamics of the pan-

demic, for infected, deaths, recovered, as functions of some exogenously chosen diffusion

parameters, which are in turn related to various policies, such as the partial lockdown of

schools, businesses, and other measures of diffusion mitigation, and where the diffusion pa-

rameters are stratified by age and individual covariates. This is the approach followed for

instance by Ferguson et al. (2020). We use a simplified version of these models to analyze

how to optimally balance the fatality induced by the epidemic with the output costs of the

lockdown policy.1 The novel aspect of our analysis is to explicitly formulate and solve a

control problem, where the diffusion parameter is affected by the lockdown, that is chosen to

maximize a social objective while taking into account the dynamic evolution of the system.2

A reason to write a planning problem directly is that, with social interactions, there is an

externality to be corrected, as understood in much of the search literature and as carefully

analyzed in Eichenbaum, Rebelo, and Trabandtz (2020) and Toxvaerd (2020). The state

of the problem is two dimensional and, in spite of its simplicity, it does not have an ana-

lytic solution. By computing the optimal policy and the associated trajectories, we aim to

gauge the key elements that determine the optimal intensity and duration of the lockdown.

1While the lockdown is not the only margin of action (other actions might involve reinforcing health
treatment capacity and incentivizing the development of vaccines), in the short run this seems to be an
important policy tool available and used by several countries.

2An optimal control problem based on a very similar epidemiological model can be found in Hansen and
Troy (2011), but the objective function and the feasible policies are different.
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We solve the problem under different scenarios, that include congestion effects in the health

care system, the effectiveness of the lockdown in reducing the diffusion of the virus and the

possibility of testing for antibodies.

We parametrize the model using a range of estimates about the COVID19 epidemic. Since

we recognize that several parameters are highly uncertain we explore a range of variations

concerning the severity of the congestion effects on the fatality rate, a range of valuations

for the value of lost lives, and the possibility of testing and releasing the recovered agents

from lockdown. The quantitative results are useful to gauge what parameters of the problem

are important in shaping the intensity and duration of the optimal lockdown policy. In our

baseline parameterization, conditional on a 1% fraction of infected agents at the outbreak,

the possibility of testing, and no cure for the disease, the optimal policy prescribes a lockdown

starting two weeks after the outbreak, covering 60% of the population after 1 month. The

lockdown is kept tight for about a full month, and is gradually withdrawn, covering 20% of

the population 3 months after the initial outbreak. The output cost of the lockdown is high,

equivalent to losing 8% of one year’s GDP (or, equivalently, a permanent reduction of 0.4%

of output). The total welfare costs is almost three times bigger due to the cost of deaths (see

Panel A in Figure 1 and Table 2).

These results are based on a relatively pessimistic parameterization of the fatality rate,

and on the fraction of the population that would have been infected if there was no lockdown.

In the less pessimistic cases, yet in our view still realistic, obtained by assuming a lower

fatality rate and/or a lower speed of spread of the virus, the optimal lockdown is shortened

by more than one month. The intensity of the optimal lockdown depends critically on the

gradient of the fatality rate as a function of the infected. If we consider a constant fatality

rate the intensity and duration of the lockdown are significantly reduced and, in some cases,

completely eliminated, even though the welfare cost of the pandemic remain high. On the

other hand, the value of the statistical life we use in our benchmark case (20 times annual

GDP per capita) is on the low range of the estimates in the literature. Following Hall, Jones,
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and Klenow (2020), our benchmark value takes into account that the majority of the victims

of the virus have a below average life expectancy. A higher value of statistical life (say 30

times annual GDP per capita), makes the abandonment of the lockdown more gradual, taking

a bit more than six months to be totally abandoned. Considering a much larger value, in the

order of 80 times the annual GDP per capita, implies a very strict lockdown that lasts for

about 9 months and maintains about 15% of the population in lockdown a year after.

Finally, our benchmark scenario assumes that there is an antibody test that allows those

that recover to be issued an immunity card and go back to work, so that they are not subject

to the lockdown. In the absence of such a test the optimal lockdown is shorter, but it involves

roughly the same total number of hours lost due to the lockdown (see Figure 1 and Table 2).

The most salient feature of the case where a test is not available is that the lockdown ends up

sooner, more abruptly. The dynamics of the epidemiological model give the insight why this

is optimal: as time goes by, the fraction of those recovered increases, and thus the lockdown

becomes progressively less efficient to stop the transmission of the virus by locking down a

progressively larger fraction of those that do not transmit it. The availability of such test

has large welfare gains, in the order of 2% of one year’s GDP.

A byproduct of the calculations is the benefit of the lockdown policy, measured as a

percentage permanent GDP flow of following the optimal policy vs the case of no lockdown

(see Table 2). Under our preferred values, the total welfare cost of the virus is equivalent to

a loss of 30% to 40% of one year’s GDP. From this loss, the part due to lockdown of workers

is between 8% and 12% of one year’s GDP.

Needless to say the analysis has limitations: the underlying model has no heterogeneity

in fatality rates nor in diffusion rates, the lockdown policy cannot be differentiated across

agent’s type (e.g. young versus old, workers vs retirees). We also ignore direct health

interventions that might be put in place to mitigate the consequences of the disease (e.g.

building emergency hospitals).

Our objective is similar to that of Eichenbaum, Rebelo, and Trabandtz (2020). While they
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focus on a competitive equilibrium where a consumption tax is used to slow-down economic

activity and the epidemic diffusion, we focus on a simple planner’s problem. In our setup, the

interaction of the law of motion coming of the SIR model and the lockdown policy makes the

problem non-convex, which requires the use global methods. Another recent contribution

addressing the optimal control problem in the presence of contagion externalities can be

found in Jones, Philippon, and Venkateswaran (2020).

The outline is as follows: the next section describes the planner’s problem and the epi-

demic model. Section 3 discusses the key model parameters. Section 4 reports the results

of the optimal control problem under different scenarios. Section 4.1 quantifies the welfare

costs of the lockdown policy under alternative scenarios, and compares them with the costs

produced in a scenario without intervention. Section 5 discusses en extension where the pol-

icy maker has access to a technology to trace, test and quarantine infected agents. Section 6

discusses future extensions.

2 A planner model of lockdown control

We start with a modified version of the SIR model as described in Atkeson (2020). Agents are

divided between those susceptible to be infected S(t), those infected I(t), and those recovered

R(t), i.e.

N(t) = S(t) + I(t) +R(t) for all t ≥ 0 (1)

The “recovered” include those that have been infected, survived the disease, and are now

assumed to be immune. Since we only include those that are alive N(t) is changing through

time. We normalize the initial population to N(0) = 1. The planner can lockdown a fraction

L(t) ∈ [0, L̄] of the population, where L̄ ≤ 1 allows us to consider that even in a disaster

scenario some economic activity such as energy and basic food production will continue. We

assume that the lockdown is only partially effective in eliminating the transmission of the

virus. When L agents are in lockdown, then (1 − θL) agents can transmit the virus, where
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θ ∈ (0, 1] is a measure of the lockdown effectiveness. If θ = 1, the policy is fully effective in

curbing the diffusion but, since some contacts will still happen in the population even under

a full economic lockdown, we allow θ < 1.

The law of motion of the susceptible agents is:

Ṡ(t) = −β S(t)(1− θL(t)) I(t)(1− θL(t)) (2)

where β is the number of susceptible agents per unit of time to whom an infected agent can

transmit the virus after contact. All susceptible agents that get the virus become infected.

For the infected, a fraction γ recovers, thus:

İ(t) = β S(t)(1− θL(t)) I(t)(1− θL(t))− γI(t) (3)

Note that locking down a part of the population, while economically costly, can be very

powerful in reducing the rate at which susceptible agents become infected. This is because

it is the product of the infected and susceptible that determines the new infections per unit

of time. Hence, decreasing the number of contacts of each, decreases the new infections by

its square. In search theory Diamond and Maskin (1979, 1981) aptly named this feature

“quadratic search”.

A rate 0 < φ(I) ≤ γ per unit of time of those infected die. Thus, the population decreases

due to death as:

−Ṅ(t) = φ(I(t)) I(t) (4)

While we assume that the rate γ at which infected recover is constant, the rate at which

the infected die varies with the number of infected I, according to

φ(I) = [ϕ+ κI] γ . (5)
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The term [ϕ+ κI] ∈ (0, 1) is the “case fatality rate” (CFR), namely the proportion of

infected persons that will die. It appears that the CFR is increasing with I, an assumption

that reflects congestion effects in the health care system. The multiplication of the CFR by

γ, the reciprocal of the infection expected duration, gives the fatality rate per unit of time.

We assume that each agent alive produces w units of output, when she is not in lockdown.

Agents are assumed to live forever, unless they die from the infection. The planner discounts

all values at the rate r > 0. We also assume that with probability ν per unit of time both a

vaccine and a cure appear, so that all infected are cured and all susceptible become immune.

The problem consists in minimizing the following (discounted at rate r + ν) present value:

∫ ∞
0

e−(r+ν)t
(
wL (t)

[
τ(S(t) + I(t)) + 1− τ

]
+ φ (I (t)) I (t) · vsl

)
dt (6)

The flow cost for the planner of having state (S, I) at t and selecting control L has two

components. The first one is wL [1− τ + τ(S + I)], the output lost due to the lockdown. In

the case where an antibody test is available (τ = 1), so that an immunity card is released

to the recovered, this equals w times the lockdown rate L times the population to which it

applies, i.e. the sum of susceptible and infected. In the case where the test is not available

(τ = 0), the cost due the lockdown is wL.

The second component of the flow cost is the product of the number of deaths per period

times the shadow value assigned to each death, or the value of a statistical life (vsl). In

particular, if there are I infected, the deaths per unit of times are given by φ(I) I. The cost

of each fatality is given by the assumed value of a statistical life, which is discussed below.

The planner’s problem is subject to the law of motion of the susceptible equation (2), the

infected equation (3), the population, equation (4), and an initial condition (N(0), I(0), S(0))

with I(0) > 0 and S(0) + I(0) ≥ N(0). Finally, when the vaccine and cure arrives there is

no more cost, and thus the continuation value is zero.
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The planner solves the following Bellman-Hamilton-Jacobi equation:

(r + ν)V (S, I) = min
L∈[0,L̄]

wL
[
τ(S + I) + 1− τ

]
+ Iφ(I) · vsl + (7)

−
[
β S I(1− θL)2

]
∂SV (S, I) +

[
β S I(1− θL)2 − γI

]
∂IV (S, I)

The domain of V is (S, I) ∈ R2 such that S + I ≤ 1. Note that V (S, I) can be inter-

preted as the minimum expected discounted cost of following the optimal policy in units of

forgone output. We solve this problem by discretizing the model to daily intervals, using

value function iteration over a dense grid for (S, I). Finally, note that the value function

has analytic expressions on the boundary of its domain, where the lockdown policy is not

exercised: on the I = 0 axis we have V (S, 0) = 0, for all S ∈ (0, 1). On the S = 0 axis we

have V (0, I) = vsl · Iγ
(

ϕ
r+ν+γ

+ κI
r+ν+2γ

)
for all I ∈ (0, 1).

Discussion of modeling assumptions

1. We restrict the extent of the lockdown to L̄ ≤ 1. This takes into account that some

sectors cannot shut down (health, basic services, food production, etc.)

2. If θ = 1 the lockdown is able to completely stop the infections process, i.e. to achieve

Ṡ = 0 (at L = 1). If θ < 1 the effectiveness of the lockdown policy is partial (people

keep transmitting the virus) but at a lower rate.

3. In the law of motion for S and I, given by equation (2) and equation (3), we write

βIS(1− θL)2, instead of βIS(1− θL)2/N . This seems standard in the SIR literature,

although it would be preferable to scale them by N . But since the dead are a small

fraction of N we follow the literature, and thus shrink the state space.

4. Infected not in lockdown are assumed to produce as much as those susceptible or recov-

ered not in lockdown. Conversely, agents in lockdown produce zero. Both assumptions

can be easily changed by rewriting the flow values of the objective function.

8
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 1

-3
2



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

5. Agents are infinitely lived, except for the risk of dying of the virus. This simplification

is acceptable given the short time horizon of the problem. We do correct for the age

distribution of fatalities in our choice of the value of a statistical life.

3 Parameterization of the model

We parameterize the model using data from the World Health Organization (WHO) com-

piled by the Johns Hopkins University Center for Systems Science and Engineering (JHU

CCSE) while acknowledging, like the rest of the recent literature, that at this point there is

considerable uncertainty about infection, recovery, and mortality rates. The data includes

the total cases, including separately those that have recovered and those that have died. We

define active cases as the total number of cases minus those that either recovered or died.

We use daily observations of all the countries that have registered at least 100 active cases

and include observations of the first 25 days after they first cross this threshold.

To calibrate β, the rate at which individuals who are infected bump into other people and

shed virus onto those people, we use the daily increase in active cases and assume a value

of 20 percent. The parameter γ governing the rate (per day) at which infected people either

recover or die is considered a fixed parameter of the disease and is set to γ=1/18 reflecting

an estimated duration of illness of 18 days as in Atkeson (2020) but also consistent with the

fraction of infected agents that recovered or died according to the WHO as compiled in JHU

CCSE.

We set the fatality rate ϕ = 0.01, which is consistent with the age-adjusted fatality rate

estimated form the Diamond Princess cruise ship and with the lower bound mortality rate in

the city of Vo’ Euganeo – two cases where there has been extensive testing. We set κ = 0.05

so the fatality rate is 3 percent when 40 percent of the population is infected. There is

considerable uncertainty on the fatality rate, mostly because the true rate of infected is not

really known. For instance, Eran, Jay, and Sood (2020) argue that the number of infected is

9
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 1

-3
2



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

probably at least an order of magnitude larger, and thus the mortality rate much smaller.

We set the planner’s discount factor to be consistent with a 5 percent annual interest rate

and the per unit of time probability ν that a vaccine and a cure will appear so that it implies

that it takes on average a year and a half for these medical discoveries to become available.

We normalize output w=1 and adopt a baseline value of a statistical life of 20 times w. Note

that in this case, a unit of output produced by each agent, w, can be interpreted as GDP

per capita, let say 65,000 USD, and the shadow cost of each life lost used by the planner is

20 times annual GDP per capita, or about $1.3 Million USD.

Our choice of the benchmark value for vsl = 20, and hence of the penalty deaths, is in

line with Hall, Jones, and Klenow (2020). These authors use an utilitarian criterion to value

the extra years of life lost among those likely to die due to the infection, obtaining a cost of

about 30 times per capita annual consumption, which is very close to our benchmark.3 The

value of 20 annual per capita GDP is much lower than the typical figures for statistical value

of life, which are closer to $ 10 million, see Kniesner and Viscusi (2020), or about 150 GDP

per capita. We will report results for a range of alternative values, considering vsl of 10, 30

and 80 annual GPD per capita.

Lastly, we assume that even in a disaster scenario, economic sectors such as health,

government, retail, utilities, and food manufacturing will continue. These sectors combined

account for 25-30% of GDP (2018). Thus, we set L̄ = 0.7.

It goes without saying that the values for several parameter are speculative. We will

conduct some sensitivity analysis to illustrate their importance.

3Following Hall, Jones, and Klenow (2020), one can use that a year of life lost is valued as three times
annual consumption. Then, one can compute the expected number of years of lives lost to those that die as a
consequence of the virus, conditional on being infected. They obtain a number between 10 and 15 years, with
10 being their headline figure. Thus, 3× 10 years× annual consumption per capita = 3× 10 years × 2/3×
annual GDP per capita = 20× annual GDP per capita.
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4 Results

We display the time path of the optimal policy starting at I(0) = 0.01, i.e. one percent of

population infected at t = 0 for our benchmark parameter values.4 In particular, we display

the time path of the optimal lockdown policy L(t) as function of time, the fraction of the

population for which lockdown applies L(t)[τ(S(t) + I(t)) + 1− τ ], the path of infected I(t),

and the total accumulated fraction of dead up to time t. Recall that N(0) = 1, so both

infected and the stock of dead can be all interpreted as fraction of the initial population. In

these graphs, the horizontal axis is time, conditional on the cure-vaccine not occurring before

that period. For comparison, we also plot the path if there is no lockdown policy, i.e. for

L(t) = 0 for all t ≥ 0.

Benchmark case. We present the results for our benchmark case first, and then implement

a sensitivity analysis. Our benchmark case favors a policy of lockdown due to the following

features: (i) the chosen values for the parameters β and γ of the SIR model imply that a large

fraction will be exposed to the virus if unchecked, limS(t) ≈ 0.03 as t→∞, (ii) we assume

that the fatality rate can increase from 1% to up to 3% of those infected when fraction of

infected goes from 5% to 40%, and (iii) we assume that those recovered can be identified and

hence they are not locked down. However our benchmark case uses a value of statistical life

of 20 times annual per capita GDP, which is in line with utilitarian values of life for those

likely to be affected by COVID-19, but an order of magnitude smaller than the average value

of a statistical life used in other public policy evaluations. We conduct sensitivity analysis

for each of the these assumptions below.

Benchmark case with testing. Panel A of Figure 1 presents the result for our benchmark

parameter case with testing. The first box in the panel shows the timeline for the optimal

lockdown. The lockdown starts two weeks after the epidemic outbreak. The fraction of

the population in lockdown peaks at 60%, about 1 month after the outbreak, and gradually

4We assume that the initial fraction of the population susceptible is 97%, or S(0) = 0.97.
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decreases to reach about 10% of the population by the 14th week of lockdown. The lockdown

ends in about 4 months. The policy yields a considerable flattening of the curve of infected,

as shown in the middle panel of the figure, by comparing the red (no lockdown) vs the blue

line (optimal policy). In the long run, the total number of deaths is about 0.80% smaller

with the optimal policy, as shown in the bottom panel of the figure.

Benchmark case without testing. Panel B of Figure 1 shows the results of the case with

no test, τ = 0. In this case, the lockdown applies to anybody in the population, including

those that have recovered from the virus. Recall that in this case, it is less efficient to

lockdown agents because the recovered are also in lockdown, which has the cost of reducing

output without the benefit of reducing the transmission of the virus. In the case of no

test, the lockdown declines much more sharply than in the benchmark case with testing.

Interestingly, in both cases the lockdown involves similar costs in terms of forgone output,

since in the absence of testing the lockdown duration is shorter but it applies to a larger

fraction of people (recovered agents are also in lockdown). In spite of this similarity, we

show below that welfare under the optimal policy with testing is higher, in the order of a

permanent 0.1% GDP flow, which is equivalent to a one-time payment of 2% of GDP.

Details on the benchmark case with testing. Figure 2 displays the value function and

the optimal policy for the benchmark parameter values. The value function is plotted in the

right panel, for the relevant state space (S, I), and normalized so that rV (S, I)/w is on the

vertical axis. The units are permanent flow costs as a fraction of the total output before

the virus. Thus, a value of 0.02, means a cost equivalent to a permanent reduction of 2%

percent in the value of output (measured before the virus). On the boundary of the state

space, where S = 0 or I = 0, the function V (S, I) has the properties described in Section 2.

The left panel of Figure 2 plots a heat map of the optimal policy L∗(S, I). Yellow indicates

higher value of the lockdown rate L, and blue indicates lower values of L. Note that close to

both boundaries, i.e. either S = 0 for I = 0, ie. it is optimal to have a zero lockdown rate.
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The left panel also plots two paths, using the phase diagram over the state space (S, I). These

are the trajectories that the system will follow starting from the initial condition I(0) = 0.01

and S(0) = 0.97. The red path corresponds to the case of no intervention. The other path

–the dashed light blue line– gives the evolution of the state under the optimal policy. It can

be seen that the fraction of infected is much smaller under the lockdown policy. The two

paths coincide for a while, since the initial condition lies in the region of the state space

where lockdown is not optimal. Then the optimal path is controlled, and produces a much

lower fraction of infected. Eventually, the path moves to the region with no lockdown, which

occurs after the system has acquired herd immunity –note that at the end the trajectory I

is decreasing even if there is no lockdown. This phase diagram can be used to follow any

other alternative paths, such as what would happen if the optimal policy were to start after

the virus has been unchecked for a longer period of time. Note that unless the susceptible

have reached a very small number, starting the optimal policy later will involved immediate

lockdown, i.e. the path will start in the yellow area.

Depending on parameter values and initial conditions the optimal policy may imply an

early lockdown (for S, I pairs close to the I = 0 axis), followed by a relaxation of the policy

and then by another lockdown.5 We leave such cases for future investigations.

Lower effectiveness of lockdown. We explored the sensitivity to parameter values by

changing the effectiveness of the lockdown, i.e. reducing it from θ = 0.5 to θ = 0.3. In the

case of less effective lockdown the duration and severity are both smaller. The fraction of

population peaks in approximately 20 days, but it decreases at a faster rate, reaching zero

lockdown two months after the lockdown start. Instead, if the lockdown where to be more

effective, say θ = 0.7, the duration will be even longer.

Constant fatality rate function (no congestion of health care system). In this case

the results change dramatically, in the sense that if κ = 0 under the benchmark parameters

5This can even be seen in the benchmark case, where there is a small isolated area of lockdown for very
small positive value of I and value of S approximately between 0.4 and 0.5.
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it is essentially optimal to have a zero lockdown. This is the case where the fatality rate is

constant at 1%, so there is no congestion on the health care system.

Different values of statistical life. Next we explore the consequences of a smaller implied

statistical value of life, half the value of the benchmark case. Unsurprisingly, the lower value

of vsl diminishes considerably the optimal lockdown level and duration, peaking at a lower

value than the benchmark case, and with duration from start to finish of about 50 days.

We also explored cases where the vsl is higher than our benchmark scenario. If we increase

the value of statistical life to 30 times annual GDP per capita –which is in the upper end

of the values consider by Hall, Jones, and Klenow (2020)6 In this case, the lockdown starts

in two weeks –a bit faster than the benchmark–, peaks in a month with about 60% of the

population in lockdown, and decreases linearly and slowly, until is abandoned slightly more

than six months after it stared. The fraction of population in lockdown reaches 10% only

after about 4 months after the lockdown started. In this case, the more aggressive, and

specially longer, lockdown policy implies that the fraction of death after the epidemic is over

is reduced by 1%, about 0.20% more than in the benchmark.

Finally we consider the value of statistical life of 80 annual per capita GDP where, as

expected, the optimal lockdown rate is very high and it last for a very long time. The

lockdown rate starts in two weeks, and L(t) = L̄ for about 8 months. The fraction of

population in lockdown reaches 50% slightly about 3 months after the lockdown started, and

it is approximately 15% a year into the lockdown, when L(t) is below its allowed maximum.

Two cases with less pessimistic parameter values. In the first case the value of β is

half of the benchmark value, β = 0.10, so the virus spreads a slower pace and it reaches a

lower fraction of the population even if L(t) = 0 for all t. In the second case, the baseline

mortality rate is half of that in the benchmark case, i.e. ϕ = 0.005. Otherwise all the

6This is consistent with a value of each year of extra life of 3 times annual consumption per capita, times
15 years of lost life expectancy conditional on dying after being infected.
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parameters are as in the benchmark case. In both cases the lockdown is at least one month

shorter.

4.1 Size of the welfare cost under optimal policy

Table 2 summarizes the value of following the optimal policy vs. the value where there is no

lockdown, for different parameter values.

Our preferred summary measure is to report rV (S(0), I(0))/w. This number is the total

expected discounted sum of future losses, both due to the lost GDP caused by the lockdown

in all future periods, as well as the values of the lost lives, where every life is evaluated using

vsl. The multiplication by r in rV (S(0), I(0))/w, converts the expected present values into

a permanent annual flow, and the division by w relates it to the output flow before the virus

outbreak. We report separately the part of the flow cost rV (S(0), I(0))/w that is purely due

to the output cost of the shutdown.7 The last column displays the present discounted values

of the cost if L(t) = 0 for all t, which we label as “No Policy” in Table 2. In the three cases

we express the losses in percentage.

Importantly, any of the three cost measures in Table 2 can be converted into the equivalent

of one year’s GDP by dividing them by r, or multiplying them by 20 given our 5% annual

interest rate. For instance, dividing by r the flow measure of the cost due to the output

lost gives a simple statistic measuring the severity and length of the lockdown. For instance,

if this measure is 10%, then the lockdown is equivalent to lose 10% of a year’s GDP, or

equivalently to lockdown 10% of the population for a year.

The first three rows of Table 2 explore the different values of effectiveness of the lockdown.

For the benchmark case, second row in the top panel, following the optimal policy implies

a permanent loss of approximately 1.5% of output. In other words, as a consequence of

the outbreak of the virus, even following the optimal policy, welfare is comparable to an

equivalent measure of being 1.5% permanently poorer. We can also recapitalize this loss and

7The part of the cost due to output is given by rw
∫∞
0
e−(r+ν)t [1− τ + τL(t)(S(t) + I(t))] dt.
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express it as fraction of one year’s GDP, obtaining 28%. From the 1.5% total permanent

loss, 0.4% is output loss due to the lockdown, or equivalent to 8% of one year’s GDP. For the

same parameters, if there is no lockdown (No Policy), the loss is equivalent to a permanent

decrease in output of 1.9%.

The second panel corresponds to the case of different values of a statistical life. Recall

that the benchmark case assumes a value of a statistical of life (vsl) of 20 annual GDP per

capita. We also consider cases of 10, 30, and 80 annual GDP per capita. For a vsl of 30

annual GDP per capita, the part due to output loss is a permanent flow of 0.6% or equivalent

to 12% of one year’s GDP.

The third panel corresponds to the case where the case fatality rate φ(I) is constant at

ϕ = 0.01, or equivalently κ = 0. In this case, the optimal policy has no lockdown, so the

loses of the optimal policy and the case of no policy are the same, and also much smaller,

since the death rate does not spike up. This highlights the importance of the assumption

implied in our benchmark case that φ is increasing, which captures the extra fatalities due

to the congestion in the heath care system caused by a large number of infected.

The fourth panel corresponds to the case of no antibody test (τ = 0). For this case, we

present different values of a statistical life. Each row expresses vsl as a multiple of the annual

GDP per capita and otherwise the same parameters as in the benchmark case. Comparing

the benchmark case –i.e. the second row of the top panel– with the same case without test –

i.e. the second row of the last panel– we find the value of the test. In particular, the expected

discounted cost under the optimal policy is, expressed as a permanent flow, 0.1% (10 basis

points) higher without test than with test, i.e. 1.6% vs 1.5%, or in terms of a one time value

approximately 2% of a year’s GDP. For a smaller value of vsl, we find that the difference

is smaller than 0.1%. Instead, as vsl increases to multiples of annual GDP per capita of 30

and 80, the difference measuring the value of the test as a permanent flow of GDP loses is

0.20% and 0.80% respectively. For our preferred parameter values (i.e. vsl between 20 and

30 times annual GDP per capita), the value of the test is equivalent to between 2% and 4%
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of one year’s GDP.

The last panel of the table contains two cases in which the outbreak is less serious, as

discussed above. In these two cases, the losses are considerably smaller.

5 Extension: the Tracing-Testing-Quarantine policy

In this section, we add a second policy to the planner problem: tracing-testing-quarantine

(TTQ). In this case, the planner will chose two controls as a function of the state: the rate of

tracing-testing-quarantining as well as the lockdown rate. The goal is to understand whether

this policy is complementary or substitutable with the lockdown policy and to explore the

parts of the state space in which each policy used. We first describe the set-up adding TTQ,

and then we show that in a special, yet interesting case, we can analyze the two policies in a

comparable two state planning problem. The two state system has computational advantages

and, more importantly, it facilitates the interpretation and comparison with the previous

case when only the lockdown policy is used. We parameterize the cost of tracing-testing as

a function of the number of people that will be put in quarantine and also in terms of the

composition of the pool of infected-recovered to which the testing-tracing applies. This allows

us to consider degrees of effectiveness of the available technology, going from the (ineffective)

extreme in which it is equivalent to random testing to one in which the cost does not depend

on the prevalence of infected among the pool to be traced. We use to examples to illustrate

the use of TTQ vs Lockdown, as we vary the effectiveness of tracing.

Setup with Testing-Tracing-Quarantine (TTQ). To analyze TTQ we introduce, Q

the stock of infected that are in quarantine. Q is the stock of those that have been identified

(traced), tested as infected, and subsequently quarantined, and have not yet recovered or

died. Each period the planner decides to trace a flow of agents at a rate T , at a tracing and

testing cost c(T ;S, I,Q) per period. The remaining law of motions for the total number of

infected I and susceptible S are changed accordingly. The state is the triplet (S, I,Q) with
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a law of motion:

Ṡt = −βSt(It −Qt)(1− θLt)2 (8)

İt = βSt(It −Qt)(1− θLt)2 − γIt (9)

Q̇t = Tt − γQt (10)

Those quarantined do not contribute to the transmission of the virus, hence the term (It−Qt)

in the law of motion for S and I. Tracing and testing a flow Tt of agents adds to the stock

of those in quarantine. Those in quarantine recover at the same speed as those infected.

The remaining notation, such as the “epi” parameters β, γ, the lockdown control Lt, and the

parameter on effectiveness of lockdown θ are as in our baseline model.

The function c(T ;S, I,Q) gives the cost of tracing-testing T agents, which are put in

quarantine when the state is (S, I,Q). This cost does not include the forgone output of

the quarantine. We allow the cost function c to depend the flow of those traced-tested-

quarantined, T , as well as on the composition of the state (S, I,Q). We assume that the

function c(T ;S, I,Q) is increasing and convex in T , for fixed (S, I,Q), and that c(0;S, I,Q) =

0. Below, we elaborate more on the parameterization and interpretation of the cost function

c and the presence of the state (S, I,Q) on it.

Given a state (S0, I0, Q0) the planner minimizes:

V(S0, I0, Q0) = min
{Lt,Tt}

∫ ∞
0

e−(r+ν)t
{
wLt

[
τ(St + It −Qt) + (1− τ)(1−Qt)

]
+ wQt + c(Tt;Si, It, Qt) + vsl φ(It)It

}
dt (11)

subject to the laws of motion equation (8), equation (9) and equation (10) above for each

t ≥ 0. Note that those in quarantine do not work, so that there is the extra cost wQt in

the period return function. Note also that the lockdown Lt applies to the remaining agents,

which itself depends on whether there is an antibody test or not –in our notation whether the
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parameter τ = 1 if there a test, or τ = 0 otherwise. The parameter w, the value of statistical

life vsl, the fatality rate function φ, and the total discount rate r + ν are as in our baseline

case.

Two comments about the boundaries of the state space. First, if Qt = It, i.e X0 = 0,

then Ṡt = 0 and İt − Q̇t = −Tt. In this case, it will be optimal to set Lt = 0 and Tt = 0,

and hence Ir − Qr = It − Qt, and Sr = St for all the future r ≥ t. Second, note that with

a positive but finite value of Tr = T̂ > 0 applied for a long enough time, then X(t) = 0 in

finite time t <∞.

State Space Reduction. In this subsection, we describe the special case in which we can

write the problem in equation (11) as a two dimensional state problem. We also describe the

parameterization of the cost c(·) of tracing and testing.

To reduce the state space define X as the stock of those infected, not in quarantine:

X = I −Q (12)

so that Ẋt = İt − Q̇t, thus we can write:

Ṡt = −βStXt(1− θL)2 (13)

Ẋt = βStXt(1− θL)2 − Tt − γXt (14)

The initial conditions of interest are X(0) = I(0) and S(0) = 1 − X(0), since there is

quarantine. Notice that S +X ≤ 1 and that T ∈ (0, X).

To eliminate {Qt} from the state, we rewrite the objective function. The expected dis-

counted cost of output forgone for those in quarantine, denoted by C({Q}), can be written,

using integration by parts and the law of motion of Q, as follows:

C({Q}) ≡
∫ ∞

0

e−(r+ν)tQtdt =
Q0

r + ν + γ
+

∫ ∞
0

e−(r+ν)t

r + ν + γ
Ttdt
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which is equivalent to “booking” the expected discounted cost every time someone is traced

and put in quarantine. The advantage of this formulation is that we can keep track of the

forgone cost of output due to the quarantine using the contemporaneous control Tt.

The introduction of X as a state variable, and the use of the current control T to represent

C({Q}) allow us to eliminate one state variable in the law of motion of the state. However,

this is not yet enough to write the problem as a two-state variable problem, since the return

function still requires to have (S,X,Q) or alternatively the original (S, I,Q). To see this

note that the period cost is given by:

wL
[
τ(S +X) + (1− τ)(1−Q)

]
+

wT

r + ν + γ
+ c(T ;S, I,Q) + vsl φ(X +Q) (X +Q)

We will add two assumptions, which will allow to eliminate Q as part of the state, which we

discuss in three steps:

1. The first term in the flow cost contains the forgone output cost of lockdown if there is

no test, i.e. the term wL(1 − Q) if τ = 0. This term can be dispensed of by focusing

on the case with an antibody test, i.e. the case with τ = 1. We will assume this from

now on.

2. The second term where we have a Q is the specification of the tracing-testing cost c(·).

We discuss the proposed formulation, and how it dispensed from the use of Q. The cost

of finding a number of people T that are infected and aren’t currently in quarantine,

i.e. a member of the population X, should depend on the size of X in the population

that is being trace-tested. If we assume that τ = 1, that population is of size S + X.

In one extreme, if testing is random, the number of people that have to be tested to

identify T is T (S + X)/X. Simply put, it is harder to find someone infected if there

are very few infected in the population and we search at random. If, instead, there is a

smart tracing technology, the cost can scale at a lower rate relative to the composition
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of the pool. This motivates the following functional form:

c(T, S,X) = η

(
T

(
S +X

X

)1−ζ
)

(15)

where η is a weakly increasing, positive, and convex function, and where ζ ∈ [0, 1]

indexes how smart the tracing is. If ζ = 0 then there is no tracing, and it is just

random sampling. If ζ = 1 then tracing is very powerful, the fraction in the population

is immaterial, and the cost depends only on the number to be traced. Summarizing,

the cost function η(z) depends on the number of “tasks” that have to be carried out to

identify T infected, and we parameterize the number of tasks as z = T ((S+X)/X)1−ζ ,

where each “task” is a combination of tracing and testing.

3. The third term where Q shows up is the number of deaths per unit of time φ(X +

Q) (X + Q) = φ(I) I, which depends on the total number of infected I = Q + X,

regardless of whether they are in quarantine or not. This can be dispensed with if we

consider the case in which the fatality rate function φ(·) is constant, i.e. κ = 0, so that

φ(X +Q) = ϕγX + ϕγQ, where ϕ and γ are constant parameters.

Combining these assumptions, i.e. τ = 1 and κ = 0, and again using integration by parts

and the law of motion of Q to rewrite vsl ϕγ
∫∞

0
e−(r+ν)tQtdt, we obtain the following per

period flow cost:

wL (S +X) + T
w + vsl ϕγ

r + ν + γ
+ η

(
T

(
S +X

X

)1−ζ
)

+ vsl ϕγX

Two-state-problem. If we consider the case of τ = 1, i.e. the presence of an antibody

test, so the first term involving Q drops out of the period cost, and κ = 0, so that Q drops

out of the term involving the fatalities per unit of time, we can formulate the problem with

only two state variables, but with two controls, L and T .
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(r + ν)v(S,X) = min
L∈[0,L̄],T∈[0,T̄ ]

wL
[
S +X

]
+ T

w + vsl ϕγ

r + ν + γ
+ η

(
T

(
S +X

X

)1−ζ
)

+ vsl ϕγX

+
[
β S X (1− θL)2

]
[∂Xv(S,X)− ∂Sv(S,X)]

− [γX + T ] ∂Xv(S,X) (16)

In the formulation in equation (16), we have also imposed a maximum flow of tracing-

testing capacity per period of T̄ . We summarize the previous argument in the next proposi-

tion:

Proposition 1. Assume that there is an antibody test, so τ = 1, and that the fatality

rate function φ(I) = ϕγ is constant, i.e. κ = 0. Let (S, I,Q) be the initial conditions for

the original three state variable problem defined in equation (11), with a minimized value

V(S, I,Q) and associated optimal policies L(S, I,Q), T (S, I,Q). Let (S,X) be the initial

conditions for the modified two state variable defined in equation (16), with a minimized

value v(S,X) and associated optimal policy L(S,X), T (S,X). Then, for all (S, I,Q) ∈ R3
+

with S + I +Q ≤ 1, and I ≥ Q, we have:

V(S, I,Q) = v(S, I −Q) +Q
w + vsl ϕγ

r + γ + ν
(17)

L(S, I,Q) = L(S, I −Q) and T (S, I,Q) = T (S, I −Q) (18)

We note that the minimization problem in the right hand side of equation (16) is a convex

problem in T . Instead, the minimization problem with respect to L, as in the problem without

TTQ, is convex at the point where ∂Xv(S,X) ≥ ∂Sv(S,X).8 It is instructive to compare

the first order conditions for the two optimal policies. To simplify the exposition here, we

8In our computations we found this condition to hold in all the state space.
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will assume that they hold at an interior solution. Furthermore, we will use a quadratic cost

η(z) = z2α/2. In this case the optimal L and T satisfy:

L =
1

θ

[
1− w

θβ S
(

X
S+X

)
[∂Xv(S,X)− ∂Sv(S,X)]

]
(19)

T =
1

α

(
X

S +X

)2(1−ζ) [
∂Xv(S,X)− w + vsl ϕγ

r + ν + γ

]
(20)

Both policies are aimed at reducing the stock infected X, so they depend on ∂Xv(S,X). For

ζ ≤ 1/2, so that the tracing-testing is not substantially better than randomly sampling the

population, the expressions for the optimal L and T depend on a similar way on ∂Xv(S,X)

as well as on the ratio X/(S + X), especially so for small values of X and larges values of

S. This suggest that the two policies are complementary when ζ is low. Instead, with ζ = 1,

these expressions suggest that tracing will be used for low X and high S, but lockdown will

not be used for those levels.

Numerical Examples. We display the heat map of policies L and T and the value function

for the same parameter values used in Table 1, setting τ = 1 and κ = 0 as required by our

previous proposition. We set the upper bound on tracing-testing flow to T̄ = 1, i.e. testing

at a speed such that the entire population will be tested in a year, and we set the testing-

tracing cost to be quadratic, i.e. η(z) = z2α/2, with α = 0.02. With this specification, if

z = T ((S +X)/X)1−ζ = 1, the cost will be α/2 = 0.01. We consider the two extreme values

of the effectiveness of tracing ζ ∈ {0, 1}. For instance, if ζ = 1, then z = 1 means that with

“perfect” tracing it takes one task to test-track one infected agent. Instead, with ζ = 0,

tracing one infected agent requires running ((S +X)/X) tasks.

Figure 3 shows the optimal policy and value function obtained from the baseline param-

eterization under two alternative assumptions about the efficiency of tracing. The upper

panel assumes random tracing (ζ = 0), i.e. to find infected individuals the population has

to be tested at random. This makes testing very expensive, especially when there is a small
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number of infected, as shown by equation (15) which diverges as X → 0. As a result, the

policy makes no use of testing, nor of the lockdown. This is illustrated by the red path

highlighted in the phase diagram of the upper panel of the figure. Recall that, as explained

above, the model assumes a constant fatality rate (κ = 0), so that lockdown was not chosen

even in the absence of the TTQ policy. Therefore, the overall welfare cost of this economy

is the same one that was recorded in the absence of the TTQ policy following an outbreak

with a 1% of infected agents. This cost is about 0.9% of annual GDP (see the third panel of

Table 2).

Instead, when tracing is perfectly efficient (ζ = 1), the policy changes substantially, as

can be seen from the lower panel of the figure. Tracing, testing and quarantine even a tiny

fraction of the population becomes substantially cheaper now, since they can be immediately

identified as opposed to be searched at random. Since those agents can be easily discovered,

it is optimal for the policy maker to trace them an quarantine them. The resulting plan,

following an outbreak with a 1% of infected agents, yields a cost that is about 0.2 of annual

GDP, a value that is about 4 times smaller than the cost of the benchmark case without the

TTQ policy (the optimal path is hardly visible in the figure as the optimal policy squashes

the fraction of infected to zero very rapidly).

Finally, we have tried larger values of a statistical life, such as vsl 40 or 80 times annual

GDP, and ζ ∈ {0, 1}. In these cases, we have found that in a larger and substantively

overlapping region of the state space both policies are used. The subset of the state space

differs depending on the values of vsl and ζ, but the fact that they overlap confirms the

complementarity that is apparent from our analysis of the first order conditions above in

equation (19) and equation (20).
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6 Future work

There are several extensions of interest. Our benchmark analysis with linear costs to social

activity implies a gradual lockdown. Allowing for non-linear output costs will affect the

implementation of the lockdown and shorten its duration, possibly giving rise to periodic

lockdowns. We also overlooked the fact that a long lockdown could have “scarring” effects

on the economy that could delay its restart (e.g. it could trigger a cascade of bankruptcies,

with long unemployment spells affecting the workers’ skills). Second, the quadratic search

effects we assumed are a natural starting point under the SIR framework. Alternative match-

ing technologies delivering different speed of transmission seem worth exploring. It would

also be interesting to explore the optimal lockdown policy in a setup where social distanc-

ing is endogenous, since behavioral changes often taken place before governments enact the

lockdown. Third, the considerable uncertainty surrounding key parameters of the SIR model

suggests that a robust control approach is valuable. Lastly, it might be interesting to bring

geographic elements and population migration into the picture. We believe all these are

important topics for future research that can be analyzed within our setup.

25
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 1

-3
2



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

7 Figures and Tables

Table 1: Parameter Values for Benchmark Case

Parameter Value Definition/Reason

β 0.20 × 365 Annual increase of active cases if unchecked

γ 1/18 × 365 Annual rate of infected recovery (includes those that die)

ϕ 0.01 Case fatality rate of 1%

κ 0.05 Implies a 3 percent case fatality rate with 40 percent infected

r 0.05 Annual interest rate 5 percent

ν 0.667 Prob. rate vaccine + cure (exp. duration 1.5 years)

L̄ 0.70 1 - GPD share health, retail, government, utilities, and food mfg.

θ 0.50 Effectiveness of lockdown

vsl 20 Value of Statistical Life 20 × w (i.e. vsl ≈ $1.3M)
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Figure 1: Time paths under baseline parameters
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Panel B – Case w/o testing (τ = 0)
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Figure Note: This figure uses the benchmark parameter values of Table 1. Panel A considers the case where

a test is available. Panel B considers the case where the test is not available. The red lines describe the

uncontrolled system, where no Lockdown is exercised. The blue lines correspond to the optimal control case.

The initial condition is I(0) = 0.01 and S(0) = 0.97.
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Figure 2: Value Function and Optimal Policy, benchmark case

Note: The figure on the left shows the optimal policy for the benchmark parameter values. The blue area

indicates lower values of lockdown and the yellow color higher values. The figure on the left depicts the value

function. The units for the value function are permanent flow cost as a fraction of the total output before

the epidemic.
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Table 2: Welfare Losses
(
rV (S,I)

w

)
with Optimal Policy vs. without Intervention

Case Parameters Optimal Policy No Policy

Welfare Loss Output Loss Welfare Loss

Benchmark Case

Low effectiveness θ=0.3 1.7 % 0.3 % 1.9%

Medium effectiveness θ=0.5 1.5 % 0.4 % 1.9%

High effectiveness θ =0.7 1.4 % 0.4 % 1.9 %

Alternative Values of Statistical Life

vsl = 10× GDP per capita 0.9 % 0.2 % 0.9 %

vsl = 30× GDP per capita 2.0 % 0.6 % 2.8 %

vsl = 80× GDP per capita 3.7 % 1.4 % 7.5 %

Constant fatality rate κ=0

Low effectiveness θ=0.3 0.9 % 0.0 % 0.9 %

Medium effectiveness θ=0.5 0.9 % 0.0 % 0.9 %

High effectiveness θ=0.7 0.9 % 0.0 % 0.9 %

No testing of the recovered τ = 0

vsl = 10× GDP per capita 0.9 % 0.1 % 0.9 %

vsl = 20× GDP per capita 1.6 % 0.4 % 1.9 %

vsl = 30× GDP per capita 2.2 % 0.6 % 2.8 %

vsl = 80× GDP per capita 4.5 % 2.5 % 7.5 %

Less pessimistic parameter values

Lower speed of spread of the virus β = 0.1 0.8 % 0.1 % 0.8 %

Lower fatality rate ϕ = 0.005 1.1 % 0.4 % 1.5 %

Note: Welfare losses are measured by the permanent percent reduction in per capita GDP induced by the
policy (or its absence) under various parameterizations. Output losses is the welfare cost component due to
the reduced level of economic activity (i.e. excluding fatalities). The benchmark parameter values are from
Table 1. Multiplying any of the numbers in the last three columns by 1/r = 20, converts the losses from
permanent flow to a one time payment as a fraction of a year GDP. The initial condition for all scenarios is
I(0) = 0.01 and S(0) = 0.97.
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Figure 3: Value Function and Optimal Policy with Testing-Tracing-Quarantine

Random tracing

Perfect tracing

Note: The figure uses the benchmark parameter values. The upper panel assumes random tracing, namely

ζ = 0. The lower panel assumed perfect tracing, namely ζ = 1
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The Covid-19 pandemic has motivated a myriad of studies and 
proposals on how economic policy should respond to this colossal 
shock. But participants in this debate seldom recognize that the 
health shock is not entirely exogenous. Its magnitude and dynamics 
themselves depend on economic policies, and the explicit or implicit 
incentives those policies provide. To illuminate the feedback loops 
between medical and economic factors we develop a minimal economic 
model of pandemics. In the model, as in reality, individual decisions 
to comply (or not) with virus-related public health directives depend 
on economic variables and incentives, which themselves respond 
to current economic policy and expectations of future policies. The 
analysis yields several practical lessons: because policies affect the 
speed of virus transmission via incentives, public health measures 
and economic policies can complement each other, reducing the cost 
of attaining desired social goals; expectations of expansionary 
macroeconomic policies during the recovery phase can help reduce the 
speed of infection, and hence the size of the health shock; the credibility 
of announced policies is key to rule out both self-fulfilling pessimistic 
expectations and time inconsistency problems. The analysis also 
yields a critique of the current use of SIR models for policy evaluation, 
in the spirit of Lucas (1976).
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1. Introduction 
 
Imagine you are a middle-aged person living in a middle-class neighborhood in one of the world´s 
great cities. It has been a month since the government confined you and your family to your flat, 
and you are getting anxious. You are not one of those privileged professionals who can do all of 
your work online. Instead, you run the kind of small business that requires face-to-face contact, 
all day long. The government postponed some of your tax payments and the bank gave you a 
bigger credit line. But nonetheless your cash reserves are running low. As is the patience of your 
employees, who send ever more frequent messages asking when they will able to go back to 
work. They understand taking public transport to get to their jobs is risky, but staying home with 
the prospect of much-reduced incomes is looking riskier still. Your business could afford to 
remain closed for another month if you were certain the economy would spring back to normal 
at the end of that period, but nowadays … who can be certain about anything? 
 
Much has been written since Covid-19 hit about the stark choices governments face between 
preserving lives and preserving livelihoods. Much less has been said about the equally stark 
choices regular citizens face. Yet in the end, what citizens do could be at least as important as 
what governments do in determining how, when and at what cost we overcome the pandemic. 
 
If the those regular citizens live not in prosperous New York, London or Milan, but in Manila, Sao 
Paulo or Lagos, the choices they face will be particularly unappealing. Initial income levels matter. 
Going for two or three months with reduced or no paycheck may be feasible for well-off families 
in rich countries, but not for households in developing countries whose incomes hover barely 
above the survival line. In the developing world the prevalence of informal jobs in informal firms 
further hinders the policy response, since governments may be unable to identify and get 
emergency financial aid to the workers and firms that need it. In the absence of past tax returns 
and accounting statement, banks may not be able to lend in order to tide people over until the 
crisis ends. 
 
And where governments have been inept, corrupt, or both, citizens may ignore their entreaties 
to stay locked down –or to return to work when the time comes. Even worse: because people´s 
willingness to forego income today hinges crucially on their confidence they will enjoy restored 
incomes in the future, trust in government policies, and the credibility of government 
announcements of an eventual recovery, are absolutely crucial for fighting the pandemic. But in 
countries where governments have seldom delivered on past promises, why should citizens 
believe them now?  
 
To make sense of all of these complex and possibly conflicting factors, we need an economic 
theory of pandemics. And what the world has at its disposal today, for the most part, are 
epidemiological theories of pandemics. The difference is not just academic. Epidemiological 
theories are backward-looking: people´s past choices determine how many cases of infection 
there are today. By contrast, economic theories are forward-looking: people´s choices today –
including the decision to engage or not in risky behavior that could result in infection— depend 
crucially on what they expect the future will bring. 
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An economic theory of pandemics is also necessary for the proper design of what government 
should and should not do during a pandemic. That is because economic policies can not only 
alleviate the economic and social effects of disease, but also change the severity of the pandemic 
itself. They can do so by changing the incentives that people face when making choices that, 
explicitly or implicitly, determine their risk of infection.  
 
If this is so, then the analysis of alternative policies should take into account their possible 
incentive effects and the resulting impact on the dynamics of disease. Badly designed economic 
policies can be at odds with lockdowns, social distancing and other public health measures. But, 
our analysis shows, thoughtful economic and public health policies can also reinforce each other 
in reducing the impact of the pandemic.  
 
To illuminate the feedback loops between medical and economic factors, we develop a minimal 
economic model of pandemics. In the model, epidemiological dynamics are similar to those in 
the standard SIR (susceptible-infected-recovered population) models. But, in contrast with those 
models, here contagion dynamics are affected by economic choices about whether to work or 
stay at home, today and in the future. In spite of its simplicity, the model yields interesting and 
sometimes unexpected results.  
 
Unsurprisingly, the decentralized equilibrium of our economy is inefficient, because an 
externality is at work: when deciding whether or not to stay at home, people do not take into 
account the impact of their choice in the relative numbers of healthy and infected people “out 
there” in the workplace, and therefore on the overall speed of disease transmission.  
 
Less obviously, the externality means that people can behave in a manner that is too risk-averse 
relative to the social optimum. If many infected people are at work already, and there isn´t 
enough testing to identify them and compel them to stay home, then having one more person 
go to work could in fact reduce the share of infected people in the workforce, and therefore cut 
back on the risk of infection. Since people do not internalize this effect, they choose to stay away 
from work even in circumstances when this is not socially desirable. 
 
Multiple expectational equilibria can also occur. If one person expects others to behave in such 
a way as to reduce the risk of infection, then it can pay off to ignore lockdown provisions and go 
to work. An equilibrium follows in which no one stays home. Conversely, the expectation that 
others will stay home can make it attractive to stay home, and society ends up in a full —and fully 
voluntary— lockdown. These equilibria can be Pareto ranked. We show the economy need not 
land in the outcome a benevolent social planner would have chosen. Depending on parameter 
values, full lockdown and no lockdown at all can be equilibrium outcomes, even when neither is 
optimal.  
 
Using this model we then turn to the effects of alternative economic and public health policies. 
We show that several economic policies can make a difference not only for economic payoffs but 
also for health outcomes. One such policy is paying people to stay home during the infection 
period.  
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Such a transfer can induce more people to stay home, reducing contagion. But, we show, not just 
any payment will do. The transfer has to be large enough to induce expectations that other 
people will also stay at home. If too small, the transfer by itself will not succeed in eliminating 
the equilibrium in which everyone goes to work. Yet the transfer policy can work if 
complemented by fines on people who break a government-mandated lockdown. This illustrates 
how economic and public health policies can complement one another. An implication is that 
economic policies that provide appropriate incentives can reduce the costs of lockdowns —
something government will like to hear, since the productivity and fiscal costs of generalized 
lockdowns are huge.  
 
Strikingly, expectations of policies to be enacted after the initial contagion phase is over can 
matter for the extent of contagion itself. Any policy that causes people to expect higher future 
wages or, more generally, higher economic returns to being healthy —and therefore able to 
work— can induce individuals to stay home during the contagion phase. This is a novel reason to 
support expansionary policies to be implemented once the pandemic has peaked: if people come 
to expect them, they will have more reason to avoid infection today.  
 
The danger, on the other hand, is that if people are pessimistic about the future they will behave 
today in ways that increase the risk of infection —and as a result make that pessimism self-
fulfilling. Another danger is time inconsistency: after the pandemic has peaked the policymaker 
may find it that the cost of honoring the promise of wage subsidies or fiscal expansion is too high, 
and may therefore renege on the earlier announcement. This suggests that only governments 
with credible leadership and a history of respecting promises will be able to generate the kind of 
expectations of future policy that can help contain the pandemic today. 
 
Finally, we also show large-scale testing to be a promising policy. But the conclusion comes with 
a twist: because testing reduces the risk of going to work, governments will have to pay people 
more to persuade them to stay home. So testing may have an indirect fiscal cost, 
unacknowledged so far. 
 
The paper is structured as follows. Section 2 sets up our basic economic model of pandemics. 
Section 3 discusses the individual decision of whether to stay at home or working, and hence of 
how much exposure to infection risk is tolerable. Section 4 characterizes the general equilibrium 
of the model, while Section 5 contains a discussion of welfare aspects.  
 
We develop our policy analysis in sections 6 and 7. Section 8 speculates on possible extensions, 
offers conjectures, and suggests additional implications. In that section we also relate our 
analysis to other existing work. Section 9 concludes. 
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2. A model of epidemics and economic incentives 
 
Consider a simple model of an economy that lasts two periods, 𝑡 = 0, 1. One can think of period 
0 as the initial contagion stage and of period 1 as the recovery phase. 
There is a continuum of agents. Population is constant and its size normalized to one. There are 
two locations we call “home” and “work”. Each individual who goes to work in period t		produces 
a quantity 𝑤)	of a single final good, so total output in this economy depends on the number of 
people who work outside their homes. Normally everyone would go to work, but these are not 
normal times. 
 
At the beginning of time a fraction 1 − ℎ, of the population is infected with a virus. The rest are 
healthy. Assume further that a fraction 𝑞 of the whole population is impossible to reach or test. 
As a result, in period 0 people in that group always go to out to work. Being drawn randomly from 
the whole population, 𝑞ℎ,	are healthy and 𝑞(1 − ℎ,) are infected.  
 
The remaining 1 − 𝑞 people are available for testing.1 Assume for simplicity that all are tested. 
Naturally, (1 − 𝑞)ℎ, are revealed to be healthy and (1 − 𝑞)(1 − ℎ,) are revealed to be infected. 
Those who learn they are ill are compelled to stay home and remain isolated. But each healthy 
person must decide whether to stay home or go to work. Call these people “decision-makers”.  
 
A decision-maker’s choice is not trivial. If she stays home she has given earnings 𝑒,, also in units 
of the good. She earns 𝑤,	if she goes to work, but can contract the virus if she meets an infected 
person. As with all infected agents, the decision-maker must stay home at t = 1 if she gets the 
virus. In addition to being unable able to work, infected people suffer a utility loss χ. This is meant 
to capture the direct pain and suffering associated with illness.  
 
The key aspect of this model is that the evolution of contagion is determined by people’s choices, 
which are health choices but also economic choices. To see this, let 𝑝	denote the fraction of 
decision-makers who choose to go to work, and let be 𝜙 the probability that a healthy individual 
who goes to work does not get infected with the virus. It follows that the number of healthy 
people in the final period is  
 

ℎ4	 = ℎ,	 − (1 − 𝜙)[𝑞ℎ,	 + 𝑝(1 − 𝑞)ℎ,	] 
 
The previous expression is just like the key equation in the famous SIR model of infectious 
transmission (Kermack and McKendrick, 1927), except that here 𝜙 depends on 𝑝.	This apparently 
minor difference turns out to be crucial, since 𝑝 (and therefore 𝜙)	are endogenous: they depend 
on the choices of decision-makers and reflect expectations about economic policy.  

 
1 Here and in the remainder of the paper we refer to antigen testing —that is, testing to detect if a person is currently 
infected. There is also antibody testing, which detects whether a person has developed immunity to the disease. 
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Period 1 is very simple. Health status becomes public information at the end of period 0 and 
infection lasts until the end of period 1. So in that period  1 − ℎ4	 people are ill and must stay 
home, in which case they earn some amount 𝑒4. The remaining ℎ4	people are healthy and, 
assuming  𝑤4 > 𝑒4, they choose to work and earn 𝑤4.		
How do people become infected? Healthy individuals can only catch the virus if they go to work 
in period 0. There is no contagion at home, reflecting the assumption that sick people are 
isolated.  
 
In the workplace, the basic assumptions of the SIR model apply. When at work a person can be 
the victim of contagion by randomly meeting an already-infected co-worker. It follows that the 
probability that a healthy person at work is still healthy in the final period is simply equal to the 
percentage of the working population that is healthy. That is,  
 

𝜙 =
𝑞ℎ,	 + (1 − 𝑞)𝑝ℎ,	
𝑞 + (1 − 𝑞)𝑝ℎ,	

< 1 

 
The probability that a healthy agent who goes to work gets infected is then 1 − 𝜙.2	
	
With this definition the transition equation can be written as 
 

ℎ4	 = ℎ,	 − 𝜙𝑞(1 − ℎ,	) 
 
This is a little model of a huge phenomenon. Yet the model clearly illustrates a crucial interaction 
that has been virtually ignored in the literature: the dynamics of contagion depend, at least in 
part, on people’s choices; and those choices depend on economic considerations —not only 
about current conditions, but also about future economic policies and outcomes. 
 
 
 
3. Individual decisions 
 
Consider the choice of a decision-maker in period 0. Staying home means that she receives 
earnings 𝑒,	. In addition, since there is no contagion at home, she will be able to work in period 
1 and earn the reward 𝑤4	. Assume, for simplicity, that agents have linear utility and there is no 
discounting. Then the value to the decision-maker of staying at home is 𝑒, + 𝑤4.  
 

 
2 A more general formulation would allow each individual at work randomly to meet (1 + 𝜌) others also at work. In 
turn, a healthy person at work would get infected with some probability 𝜅 if she met an infected worker. To alleviate 
notation, we shall impose 𝜌 = 0  and 𝜅 = 1  in the subsequent discussion, although it will be clear that more general 
cases are easy to analyze.  
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Alternatively, the decision-maker can go to work in period 0.	 But then she runs the risk of 
infection and being unable to work in period 1.	Recalling that the probability of infection at work 
is (1 − 𝜙), and that infection also causes a utility loss χ, the value of going to work in period 0 is 
𝑤,	 + 𝜙𝑤4	 + (1 − 𝜙)(𝑒4 − 𝜒). 
 
Hence a decision-maker will go work today if 𝑤,	 + 𝜙𝑤4	 + (1 − 𝜙)(𝑒4 − 𝜒) is greater than 𝑒, +
𝑤4 or, equivalently, if 
 

𝑤, − 𝑒, > (1 − 𝜙)(𝑤4 − 𝑒4 + 𝜒) 
 
She will stay home if the opposite is true.  
 
This inequality is crucial and establishes how individual agents choose their exposure to 
contagion depending on economic variables. Indeed, the inequality compares the current gain 
from going to work to the expected loss, the latter given by the probability of infection times the 
sum of two elements: foregone income and disutility in the case of infection. 
 
A decision-maker’s choice depends on a “double relative”: today’s value of working relative to 
staying at home, and tomorrow’s overall welfare relative to today´s. Both intra-temporal and 
intertemporal considerations matter. This will be particularly important for our policy analysis.  
 
Observe also that the decision-maker’s choice depends on (1 − 𝜙), the probability of infection 
at work. But, as we saw, that probability depends on how many decision-makers go to work. The 
final outcome is then determined by the equilibrium choices of all decision-makers. 
 
 
4. Equilibria 

 
An equilibrium is defined in the usual way. Given the linearity of the model, it is natural to start 
by asking whether there are equilibria with either 𝑝 = 0 or	𝑝 = 1.   
	
Consider 𝑝 = 0 first. In that case, 𝜙 = ℎ,, reflecting the fact that if no decision-maker goes to 
work the probability of meeting a healthy agent in a random meeting is just equal to the 
frequency of the healthy in the initial working population. For this to be an equilibrium, a typical 
decision-maker must find it optimal to stay at home, which requires 
 

𝑤, − 𝑒, < (1 − 𝜙)(𝑤4 − 𝑒4 + 𝜒) 
 
or, with 𝜙 = ℎ,	, 

𝑤, − 𝑒,
𝑤4 − 𝑒4 + 𝜒

< 1 − ℎ,	 

 
Since the term on the RHS is always less than 1, an equilibrium in which all decision-makers stay 
at home exists in this model under some parameter conditions. 
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What are those conditions? Observe first that the LHS is smaller, and the preceding inequality 
less restrictive, if χ is larger. This is only natural: if working outside the home can result in 
infection, decision-makers will choose to stay home if χ is sufficiently large.  
 
Other factors are economic. The inequality is more likely to be satisfied if the relative cost of 
staying home today is small compared to the relative cost of staying home tomorrow. This is why 
the ratio on the LHS of the inequality increases with 𝑤, − 𝑒, and falls with 𝑤4 − 𝑒4. 
 
Finally, the inequality is less restrictive if ℎ, is small. In that case, the probability meeting an 
infected person at is large.  
 
In an equilibrium with 𝑝 = 0, the final number of infections is minimal. The transition equation 
for the share of healthy people becomes:	
	

ℎ4 = ℎ, − 𝑞ℎ,	(1 − ℎ,	) 
 
Note that this equation again has the SIR form, but now with 𝜙 = ℎ,.3 
  
While infections are lowest in an equilibrium with 𝑝 = 0, the implications for production are 
ambiguous. In the first period the number of people at work is as small as it can be, so total 
output is minimized in that period. On the other hand, the number of available workers and, 
hence, total output in the second period are both maximized. We elaborate on the policy 
implications of this tradeoff in a later section.  
 
Can there be an equilibrium with 𝑝 = 1? Analogous reasoning leads to the conclusion that the 
answer is yes if 
 

𝑤, − 𝑒,
𝑤4 − 𝑒4 + 𝜒

> 1 −
ℎ,

ℎ, + 𝑞(1 − ℎ,)
 

 
The intuition is analogous as that of the case 𝑝 = 0. But there is a key difference. In an equilibrium 
with  𝑝 = 1  each decision-maker’s perception of the probability of infection if she goes to work 
is different than in an equilibrium with 𝑝 = 0. This is because of the “contagion technology”: the 
proportions of healthy versus and workers depend on how many decision-makers go to work.  
 
The period-1 shares numbers of infected and healthy people are again given by equations of the 
SIR type.  The healthy evolve according to ℎ4		 = ℎ,	 − 𝜙𝑞(1 − ℎ,	), but in this case 
 

 
3 In this equilibrium, advocates of the SIR model would claim that the model would have been “right” if only they 
had been able to pin down the correct 𝜙 from past information. This is reminiscent of Lucas (1983), and also 
consistent with the current debate of shifting U.S. predictions for the impact of Coronavirus. See sections 8 and 9 
for further discussion.  
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𝜙 =
ℎ,	

ℎ,	 + 𝑞(1 − ℎ,	)
< 1 

 
which is bigger than the 𝜙 in the 𝑝 = 0 equilibrium. This underscores the fact that the dynamics 
of contagion depend on economic factors. One of the important economic determinants is 
people’s expectations about the future, which play no role in SIR-type models.  
 
In fact, multiple self-fulfilling expectational equilibria can exist in this model. Given the analysis 
above, equilibria with 𝑝 = 0 and 𝑝 = 1 are feasible provided that 
 

(1 − ℎ,) =
𝑞

𝑞 + ℎ,(1 − 𝑞)
> <

𝑤, − 𝑒,
𝑤4 − 𝑒4 + 𝜒

< (1 − ℎ,) 

 
The intuition is as follows. More people get infected with the virus if more decision-makers go to 
work instead of staying home. But if more decision-makers go to work and infection rates 
increase, the relative rewards of working relative to staying home change in favor of the former, 
inducing more decision-makers to work, even after taking into account the higher risk of getting 
sick. Conversely, if more people stay home, infection rates fall, and future economic conditions 
change so as to induce decision-makers to remain home. So there is strategic complementarity 
across decision-makers´ actions, and that can produce multiple equilibria.  
 
We do not want to overemphasize here the possibility of those multiple expectational equilibria. 
But we do wish to underscore the crucial role of expectations in determining the dynamics of 
contagion. The speed of contagion is not only a public health issue: it is an economic issue as well.  
 
The main and key implication so far is that there is a two way interaction between public health 
outcomes (and, as we will see, policies) and economic variables, including policies. That the 
interaction goes both ways turns out to be crucial to think about policy. But so far in the 
discussion the link has only been recognized in one direction: economists have largely taken the 
dynamics of the epidemics as an exogenous shock, and tried to tweak the policy response to 
attenuate social costs. Our analysis reveals that feedback in the other direction can also matter: 
economic policies influence the severity of the pandemic itself.  
 
We expand on the policy analysis shortly. But before it is necessary to take a stand on what is 
socially desirable in this situation. We now turn to that issue.  
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5. Welfare implications 
 
Suppose that the social welfare function is nothing but the weighted average of individual welfare 
levels, with the weights provided by the shares of the population at work and at home. Therefore, 
 

𝑊 = [𝑞 + 𝑝(1 − 𝑞)ℎ,]𝑤, + [(1 − 𝑞) − 𝑝(1 − 𝑞)ℎ,]𝑒, + ℎ4𝑤4 + (1 − ℎ4)(𝑒4 − 𝜒) 
 
Clearly, social welfare is a function of 𝑝, the share of people who go to work. Ask next which is 
the setting of 𝑝 a benevolent planner would choose in order to maximize social welfare.  
Appendix 1 shows that the sign of the derivative of 𝑊 with respect to 𝑝 is the sign of  
 

(𝑤, − 𝑒,) − (𝑤4 + 𝜒 − 𝑒4)(1 − 𝜙)@ 
 
So if (𝑤4 + 𝜒 − 𝑒4) is sufficiently large relative to (𝑤, − 𝑒,), then social welfare is always 
decreasing in 𝑝. This is because having more people go to work has two effects that point in the 
same direction: it increases the human cost of infection and also cuts back on the number of 
people healthy who can go to work in the future, when (𝑤4 − 𝑒4), the gain from working 
relatively to staying at home, is large. In this case, there is no tradeoff between protecting lives 
and protecting livelihoods: keeping at home everyone who can be compelled to do so is clearly 
the better policy.  
 
Conversely, if (𝑤4 + 𝜒 − 𝑒4) is small relative to (𝑤, − 𝑒,), then staying at home has benefits but 
also costs, because it means foregoing the relatively large reward from working in period 0. In 
this case there is indeed a tension between protecting lives and protecting livelihoods. 
 
Appendix 1 also shows that the second derivative of 𝑊 with respect to 𝑝 is always positive, 
meaning the social welfare function is convex, not concave, in the share of people to go to work. 
So there is no interior optimum. The choice for the benevolent planner is simply between 𝑝 = 0 
(everyone stays home) or 𝑝 = 1 (everyone who can goes to work). 
 
Which one is better? Appendix 2 shows that 𝑝 = 0 is preferred if  
 

𝑤, − 𝑒,
𝑤4 − 𝑒4 + 𝜒

< 𝛾(1 − ℎ,	) 

 
where 

𝛾 =
𝑞(1 − ℎ,	)

ℎ,	 + 𝑞(1 − ℎ,	)
< 1 

 
By contrast, under decentralized decision-making the condition was 
 

𝑤, − 𝑒,
𝑤4 − 𝑒4 + 𝜒

< 1 − ℎ,	 
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Two conclusions strike the eye. The first is that the condition for the planner is not the same as 
for the individual. That is not surprising, given that there is an obvious externality: in deciding to 
go or not to work, individuals do not take into account the impact their own decisions have on 
the aggregate infection risk. 
 
The second conclusion is more surprising: because the coefficient 𝛾 is smaller than one, the 
condition for 𝑝 = 0 to be optimal is more stringent for the planner than for the individual! Put 
differently,  (𝑤4 + 𝜒 − 𝑒4) has to be larger relative to (𝑤, − 𝑒,) in the case of the planner. So 
individuals are more “conservative” (more inclined to stay home) than is socially optimal.  
 
Why is that so? Because the proportion of infected people is smaller among decision-makers than 
among people “out there” in the workplace, and what decision-makers fail to internalize is that 
if they go to work, they actually help reduce —not enhance— the risk of contagion at work. 
 
The practical implication is that society could end up locked down even in situations in which that 
is not socially desirable to do so. That may seem far-fetched but isn´t. Think of the UK, which 
initially tried to adopt a soft lockdown like the one Sweden has adopted, but soon gave up 
because of political pressure to “do more”. Or think of Chile, where mayors are constantly 
pressuring the national government to impose a more stringent lockdown, in more regions of the 
country, than the government thinks is necessary or desirable.  
 
The point may also be relevant when the time comes to lift lockdown policies. So far the focus 
has been on persuading people to stay home. But eventually governments will also have to 
persuade people to go back to work. The analysis here suggests that the second task may turn 
out to be anything but easy or straightforward. 
 
We have postulated that the social welfare function is the weighted average of the ex post utility 
of the individual agents in the economy, which turns out to coincide with the expected welfare 
ex ante (that is, prior to the contagion period) of the representative individual. One can argue, 
however, that social welfare can be different from expected individual welfare for a number of 
reasons. So the social cost of infection could larger than the individual cost. One way to capture 
this possibility is to replace the parameter χ in the previous social function 𝑊		by some �̂� > 𝜒, 
with the gap �̂� − 𝜒 capturing the discrepancy between the social and individual cost of infection.  
 
With this change the analysis in this section remains the same except for one observation: if the 
social cost �̂� is high enough, the social optimum entails minimizing the extent of contagion —
that is, setting 𝑝 = 0		no matter what. In the current debate it is often claimed that policy should 
aim to minimize the number of infections regardless of economic costs. Assuming a sufficiently 
large �̂� is one way to formalize and justify that belief.  
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6. Policies during the contagion phase 
 
Our model is extremely simple, but precisely because of that simplicity it helps identify and 
understand the implications of alternative policies —both of public health policies such as 
lockdowns and economic policies such as taxes and transfers. 
 
Government policies require resources, which in turn have an alternative social value. To say 
something about desirable policies, one must take this alternative social value of resources into 
account. We do that in the following way.  
 
Suppose the government that can impose taxes, make transfers and enact laws. Assume it can 
also provide a public good, which is purchased at the end of period 1 and has social utility value 
proportional to the amount spent. One can think of the public good as infrastructure, or 
international reserves, or the assets held in a sovereign wealth fund. Regardless of the precise 
interpretation, suppose that if the government invests 𝑖 in the public good, all agents receive a 
utility bonus 𝛼𝑖, where 𝛼 is a positive constant. The assumption that the marginal value of the 
public good is constant keeps the analysis that follows manageable.  
 
As for public finance, assume that at 𝑡 = 0	the government has an initial endowment 𝑓 > 0.	
Aside from transfers to households, the government has no other expenditures. It can borrow or 
lend at a zero interest rate (this is consistent with equilibrium because our assumptions ensure 
that private agents would in fact be willing to borrow and lend at a zero rate). 
 
Imagine that in the absence of the virus the government would have imposed no taxes nor made 
any transfers. In that case, the size of the public good provided would be given by the size of the 
initial government reserve, so 𝑖 = 𝑓. Utility for each person would be 𝑤, + 𝑤4 + 	𝛼𝑓.  
 
Now consider what happens when the virus hits. As a benchmark, suppose that  
 

𝑤,
𝑤4 + 𝜒

> 1 − ℎ, 

 
We showed earlier that under these parameter values the only equilibrium in the absence of 
government action is 𝑝 = 1 and therefore the highest possible rate of infection. In that case the 
virus causes expected utility to fall to  
 

[𝑞(1 − ℎ,) + ℎ,]𝑤, + ℎ4𝑤4 − 𝜒(1 − ℎ4) + 𝛼𝑓 
 
with  

ℎ4 = ℎ, −
𝑞ℎ,(1 − ℎ,)
𝑞 + (1 − 𝑞)ℎ,

 

 
The absence of government action implies two kinds of losses: fewer agents work in both periods 
and in the end there are (1 − ℎ4)	infections, which inflict a direct utility loss 𝜒(1 − ℎ4).  
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Now suppose instead that in response to the virus the government gives a transfer to people who 
stay at home in period 0. This means that the government makes 𝑒, positive instead of zero. 
What is the impact? With a positive 𝑒,, one might guess that  expected utility would become 
 
[𝑞(1 − ℎ,) + ℎ,]𝑤, + (1 − 𝑞)(1 − ℎ,)𝑒, + ℎ4𝑤4 − 𝜒(1 − ℎ4) + 𝛼[𝑓 − (1 − 𝑞)(1 − ℎ,)𝑒,] 

 
with ℎ4	defined as in the previous equation. This is a natural conjecture. With 𝑝 = 1, a group of 
people of size (1 − 𝑞)(1 − ℎ,) would receive the transfer, which would have to be financed with 
an equivalent-size reduction in public good provision.  
 
Would this policy be welfare-improving? The expression above reveals it would be if and only if 
𝛼, the marginal value of the public good, is less than one.  When 𝛼 > 1 a positive 𝑒, would not 
be justifiable, no matter how much direct pain and suffering the virus causes. Remarkably, this 
conclusion would follow independently of the values of 𝑤,, 𝑤4 and χ.  
 
The preceding analysis takes the dynamics of infection as “shock” to be confronted by economic 
policy. That is precisely what makes it wrong. It fails to acknowledge that 𝑒,	alters economic 
incentives for people to stay home and, in so doing, it can cut the severity of the infection shock.  
 
In particular, suppose that 𝑒, is chosen so that 
 

(1 − ℎ,) =
𝑞

𝑞 + ℎ,(1 − 𝑞)
> >

𝑤, − 𝑒,
𝑤4 + 𝜒

 

 
Then, in equilibrium, 𝑝 must fall to zero: no decision-makers go to work and expected utility is 
 

𝑞𝑤, + (1 − 𝑞)𝑒, + ℎ4𝑤4 − 𝜒(1 − ℎ4) + 𝛼[𝑓 − (1 − 𝑞)𝑒,], 
 
where, in this case,  

ℎ4 = ℎ, − 𝑞ℎ,(1 − ℎ,) 
 
This last equation indicates that the number of infections falls to its lowest possible level. 
 
Therefore, the correct analysis differs from the previous “incorrect” one by taking into account 
the changes that 𝑒, induces on individual choices. It recognizes that a large enough 𝑒,  causes 
decision-makers to stay home. Total output changes: it falls in period 0 because fewer people go 
to work, and increases in period 1, because more people are healthy then. Last but certainly not 
least, the increase in ℎ4	has the direct beneficial effect of reducing pain and suffering.  
 
The total fiscal cost of transfers would be (1 − 𝑞)ℎ,𝑒,, with a direct utility impact of 
(1 − 𝛼)(1 − 𝑞)ℎ,𝑒,.	If 𝛼 < 1	there is no tradeoff. But if 𝛼 > 1 the policy has a direct utility cost, 
which has to be weighed against the indirect utility benefit caused by the change in behavior. 
The rewards for work 𝑤,	and 𝑤4	and the direct cost of infection χ are important to evaluate 
overall welfare effects. Indeed, for a large enough χ,	it would be optimal to set a positive 𝑒,. 
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The general point is that economic policies can have incentive effects on the individual decision 
problems about how much infection risk to take, which can induce agents to change their choices 
in a way that alters the dynamics of infection. Designing economic policy to deal with a pandemic 
must take this possibility into account, for it can alter the relative evaluation of alternative 
policies. At the same time, the potential change in behavior can provide opportunities to reduce 
the human cost of the crisis if measures are properly tailored.  
 
Consider, for example, the impact of cash transfers. In our model, a general cash transfer in 
period 0 is simply a gift of some size, say 𝜏, to all agents. A moment’s thought reveals that the 
transfer’s impact on expected utility is just (1 − 𝛼)𝜏, the difference between the consumption 
value of the transfer to agents minus the value of the cost of the transfer (the reduction of the 
size of the public good 𝑖). What about the impact on equilibrium infection rates? There is none, 
since a general cash transfer does not have any incentive effects: it increases the payoff of 
deciders by 𝜏 regardless of whether they work or stay home.  
 
In contrast, a policy of giving transfers to individuals that stay home in the initial period does have 
incentive effects, as we saw before. This is the traditional argument for targeted cash transfers, 
except that here “targeted” acquires a particular meaning: transfers are more effective if 
allocated to people who stay home, because in addition to compensating for lost income they 
reduce the relative reward of work and hence the risk of infection and the spread of the virus.  
 
The same argument applies to expanded unemployment insurance benefits. If viewed simply as 
a way of propping up household consumption, the policy is imperfect in that it only reaches 
people who already had jobs. Our model reminds us that increased unemployment insurance 
benefits have an additional effect: they can induce workers to stay home. In fact, 𝑒, could be 
interpreted as unemployment insurance. 
 
So far we have asked how government can induce people to stay home by means of economic 
incentives. But “lockdown” policies can also be non-voluntary. Suppose that the government 
enforces a lockdown by imposing a penalty 𝜋 on anyone found working during the contagion 
period. We can thing of 𝜋 as a fine, jail time, or perhaps social sanction like public shame. In all 
these interpretations 𝜋, if paid in equilibrium, involves a deadweight loss.  
 
A small 𝜋	 would not induce the low-infection equilibrium, but it is obvious that a large enough 𝜋	
would induce decision-makers to stay home, resulting in the low-infection equilibrium. If this 
equilibrium is preferred to the high-infection one, the lockdown has a beneficial effect.  
 
But it can also result in a deadweight loss. If you interpret 𝑞 in our model as the fraction of the 
population that must work during the contagion period (for instance, those workers perform 
essential functions), then the social deadweight loss of the lockdown is at least 𝑞𝜋. In fact, it 
could be larger. If incentives to work are strong enough, then as many as 𝑞 + (1 − 𝑞)𝑝ℎ,	could 
choose to pay the fine, in which case the deadweight loss would be [𝑞 + (1 − 𝑞)𝑝ℎ,	]𝜋.  
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This suggests that lockdowns enforced by fines can be a very blunt way to slow the spread of the 
virus. But it also reveals a more subtle point: economic policies can make a lockdown more 
effective. To see this, suppose that the penalty 𝜋 is too small in the sense that equilibrium would 
remain at 𝑝 = 1. Clearly a sufficiently large increase in the period-1 transfer 𝑒, would ensure that 
equilibrium shifts to 𝑝 = 0.	Hence the transfer would render the otherwise counterproductive 
lockdown effective at reducing infection. And the reverse also holds: a transfer 𝑒, can be too 
small by itself to ensure the low infection equilibrium, but can attain that equilibrium if a 
lockdown policy is added. In other words, economic policy and health policy can be complements.  
 
 
 
7. Contagion and expectations of policies during the recovery 
 
People’s choices in period 0, and hence the dynamics of infections, depend not only by policies 
on that same period. They also depend on expectations about policies and economic outcomes 
in period 1. This is so because decision-makers face an intertemporal trade-off: working today, 
and earning more income than if staying home, puts them at risk of infection and not being able 
to work tomorrow. Hence their choice depends on policies that affect the relative reward to work 
tomorrow, and on 𝑤4, the expected size of that reward.  
 
For instance, consider a transfer of size 𝜏 to people who work in period 1. If the transfer is large 
enough, in the sense that 
 

(1 − ℎ,) =
𝑞

𝑞 + ℎ,(1 − 𝑞)
> >

𝑤,
𝑤4 + 𝜏 + 𝜒

, 

 
then the high-contagion, 𝑝 = 1	equilibrium disappears and the only feasible outcome is the one 
with 𝑝 = 0. Intuitively, expectations of a high reward to work in the final period increase the 
expected cost of infection, inducing the individual decision-maker to stay home.  
 
We can think of the period 1 reward to work as resulting from expansionary macroeconomic 
policy in the recovery phase. For example, one could append to our simple economy a 
macroeconomic model. The government would have the ability to increase 𝑤4 by means of a 
fiscal expansion presumably	financed by borrowing, implying a final fall in the size of the public 
good 𝑖. In such a situation, a fiscal expansion would work exactly as the 𝜏 transfer just described.  
 
If the low-infection equilibrium is socially preferred to the high-infection equilibrium, then there 
is a new argument in favor of expansionary policies during the recovery phase: such policies 
might be desirable not only because of their impact on output and wages during the infection 
phase, but also because they affect incentives and help lower the rate of infection, increasing the 
size of the workforce available during the recovery.  
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This argument is quite intuitive. People will be willing to be “locked down” and to forego income 
in the short run if they expect the initial sacrifice will have a payoff in terms of both reduced 
infection rates and higher chances for well-paid employment once the crisis begins to abate. But 
if people come to expect the economy will be in sorry shape and their own incomes will be low 
in the future, then it is quite possible they will feel compelled to go out and try to increase their 
earnings today. That, of course, will increase the rate of infection, lower ℎ, and reduce aggregate 
income tomorrow, thus ensuring the economy will indeed be in bad shape!  
 
This line of reasoning suggests a second avenue for strategic complementarities and possible 
multiple equilibria in this model. So far we have treated 𝑤4, the wage in the recovery phase, as 
exogenous and independent of the number of people who are healthy and able to work in period 
1. But it could well that there are some economic activities that have fixed costs of operation, so 
that they need minimum numbers of workers and/or customers to restart. In that case the 
average wage could be increasing in ℎ4,	the share of healthy people in period 1.  
 
The rest of the story is easy to tell. If people expect a high monetary reward from being healthy 
and being able to work in the future, then they will be more likely to stay home and reduce the 
chance of infection today, enlarging the workforce tomorrow and making a buoyant economy 
possible. At the same time, the pickup in economic activity would increase government tax 
revenues, making it more feasible for the government to undertake expansionary policies and 
deliver another round of growth vitamins.  
 
The lesson, then, is that people´s willingness to behave cautiously during the emergency depends 
crucially on expectations of what will happen to the economy and what government policies will 
be during the recovery phase. But before we get too excited at the prospect of self-confirming 
cycles of optimism and infection abatement, one warning: promises of future expansion may be 
time-inconsistent, and therefore less than fully credible.  
 
This is clear in the case of 𝛼 > 1. Then, when the recovery phase arrives the government will 
have an incentive to reduce the size of any transfer 𝜏 it may have previously promised: each unit 
saved in transfers would allow for a unit increase in the size of the public good, implying a net 
utility gain of (𝛼 − 1). Since at that point the final number of infected people has already been 
determined, a benevolent government would deliver smaller transfers than announced earlier.  
As we know full well from the literature on time inconsistency, government promises during the 
initial contagion phase would then be likely to be ignored, unless the government has some way 
to commit not to break those promises during the recovery phase.  
 
So we conclude that policies expected for the recovery phase can have a significant influence on 
individual choices during the initial crisis phase and, consequently, on the dynamics of contagion 
and the spread of the virus. At the same time, for those policies to have an impact they have to 
be announced in advance and be credible. This suggests that only governments with enough 
credibility, built via durable institutions or a history of honoring promises, can take advantage of 
this policy option and use it to diminish contagion. 
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8. Extensions and relation to existing work 
 
How general are our results? At some level, they are very general: they come from marrying the 
standard account of infection transmission with a minimal model of economic behavior that 
responds to incentives. And they follow from a very simple but intuitive principle: if economic 
policies can affect those incentives, then they can affect the transmission of disease. So our 
approach to policy should apply in any model where the dynamics of infection depend, at least 
to some degree, on individual economic choices.  
 
While our main messages do not depend on the particulars of the model (which is why we 
endeavored to convey them in the simplest model we could think of), it is worth thinking about 
the role of different features of the model and how some of our more specific results may depend 
on them.  
 
Many of our assumptions, such as the linearity of preferences or a fixed output per worker, 
should not be too hard to relax and are unlikely to change anything substantial in the analysis.  
 
More fruitful is to examine the implications of changing the technology of infection, which is the 
more novel part of our model. We started by assuming that a share 𝑞 of the population cannot 
be reached or tested, while the rest of the population can be. As a result, so-called decision-
makers are drawn from a set of people who know they have been infected. When those decision-
makers choose to go to work, they enlarge the share of healthy people in the workforce. That is 
why 𝜙, the probability of being infected at work, is increasing in 𝑝, the share of decision-makers 
who do work.  
 
That specification is special in several ways. It implies that the share of decision-makers who are 
infected is less than the share of infected people “out there” in the workplace (or the street, the 
store, the public bus or the subway cart). That seems like a reasonable description of society in 
the early stages of spread of the virus, when many people are yet to be reached by authorities, 
informed of what is going on, and tested. But it also means that sending more decision-makers 
to work during the contagion period changes the proportions of healthy people versus infected 
ones in favor of the former. And while all decision-makers know themselves to be healthy, they 
do not internalize the impact of their individual choices on the aggregate probability of infection. 
This combination of features explains why there may be strategic complementarities, allowing 
for multiple equilibria and for the peculiar nature of externality effects.  
 
We can ask, then, what happens if the parameter 𝑞 falls. This is a particularly interesting question 
because a lower 𝑞 is tantamount to an increase in the scale of testing, which Paul Romer and 
others have forcefully advocated.4 Leaving aside issues of feasibility and scalability of large-scale 
testing, what are the effects of that policy? 
 

 
4 See, for example, Romer and Garber (2020).  
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For any given 𝑝, in the model the effect of q on the probability that a decision-maker stays healthy 
is given by:  
 

𝜕𝜙
𝜕𝑞 = −

ℎ,	𝑝(1 − ℎ,)
[𝑞 + (1 − 𝑞)𝑝ℎ,	]@

< 0 

 
So more testing means fewer chances of being infected and stronger incentives to go to work.  
 
Assume that the government attempts to induce decision-makers to stay home by giving them a 
transfer during the contagion period. Recall that the transfer would be always (that is, regardless 
of expectations) effective at attaining such objective only if  
 

(1 − ℎ,) =
𝑞

𝑞 + ℎ,(1 − 𝑞)
> >

𝑤, − 𝑒,
𝑤4 + 𝜒

 

 
Clearly, the LHS is an increasing function of 𝑞.  
 
Therefore, in the presence of more testing, the transfer necessary to keep people home is larger! 
This may seem surprising but is not: if it is now less risky to go to work, people will demand a 
larger compensation to stay home.  
 
So large-scale testing is not without wrinkles. Or, to put it differently, to the direct logistical costs 
of testing millions of people every few days one should add the higher indirect cost of 
compensating them, once they have been tested, to make sure they do not go to work.  
 
An extension would need to place the extent of testing at the center of our model. For instance, 
different shares could be tested within the 𝑞-population that must always go to work and the 
(1 − 𝑞) population that can choose whether to do so. That could reverse the nature of the 
externality at work, and cause equilibrium behavior to be excessively risk-taking.  
 
Observe also that we have assumed that, after testing, individuals not only learn if they are 
infected or not, but also forced to stay home if they turn out to be sick. In the parlance of Romer 
and others, we have assumed a “testing-cum-isolation” policy. But one could also ask what would 
happen if there is random testing but no isolation requirement. This may be a realistic alternative.  
 
In our model analyzing a testing-without-isolation policy would require asking what would 
happen if infected individuals had the choice of working or staying at home in the initial period. 
Presumably the answer would depend on assumptions about how the rewards from working are 
affected by sickness —in a plausible case, 𝑤) would be lower for infected people. This extension 
may be worth pursuing, but falls outside the main focus of our paper. 
 
Likewise, we have assumed that individuals are ex ante identical. A straightforward extension of 
our model could allow for ex ante health heterogeneity. We assumed so far that at work a healthy 
person gets infected with probability one if she meets an infected coworker. Instead one could 
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assume that the probability is given by some idiosyncratic parameter 𝜃, where 𝜃 has a non-
degenerate distribution in the population. This would capture the fact that people have different 
degrees of susceptibility to contagion, perhaps because of age.  
 
An educated conjecture is that appropriate assumptions about the distribution of 𝜃 would 
introduce enough smoothness into the model so that equilibria other than the extreme 𝑝 = 0 
and 𝑝 = 1	would appear. An interior equilibrium, with 0 < 𝑝 < 1, would have the appealing 
property that only ex-ante healthier decision-makers (that is, those with 𝜃  greater than a certain 
threshold, if higher 𝜃 corresponds to lower probability of infection) would work.  
 
Guessing other consequences of this extension is more hazardous. It is not obvious, for instance, 
that multiple equilibria would disappear; on the contrary, equilibria could become even more 
abundant. These questions offer promising avenues for future research.  
 
Clearly many other extensions are imaginable, and one could endlessly conjure alternative 
formulations and their implications. To a large extent this is the case because the literature on 
the economics of pandemics is in its very early infancy. So rather than speculating further on 
variations of the model, it seems more fruitful at this point to clarify how our paper contributes 
to the related literature.  
 
Our paper is most closely related to the very recent papers on macroeconomic policy responses 
to the Covid-19 crisis. Prominent examples are Fornaro and Wolf (2020), Faria e Castro (2020), 
and Jorda, Singh and Taylor (2020). These and other papers attempt to characterize the dynamics 
of the economy under alternative macroeconomic policies in an infinite-horizon setting. But they 
all take the dynamics of the Covid-19 pandemic as exogenously given.  
 
Fornaro and Wolf (2020) argue that the pandemic can be seen as an adverse shock to productivity 
growth, while in Faria e Castro (2020) pandemics are tantamount to preference shocks. By 
contrast, our model has only two periods and is much less ambitious in terms of dynamics, but it 
does characterize the dependence of contagion on individual economic decisions. And, to the 
extent that individual decisions depend on current and future policy, the evolution of the 
pandemic can be influenced by policy. In this sense, modeling the impact of Covid-19 as 
exogenously given shocks potentially leads to invalid policy analyses. But the quantitative 
significance of this shortcoming remains, of course, an empirical issue. 
 
Two recent papers include a channel for policy to influence virus dynamics though its impact on 
the decisions of individuals: Eichenbaum, Rebelo and Trabandt (2020);  Jones, Phillipon, and 
Venkateswaran (2020).5 They all develop dynamic models where a virus hits the economy and 
contagion follows SIR-type dynamics. Moreover, SIR equations are assumed to depend on 
consumption and hours worked. As in our analysis, individual agents understand that their 
consumption and labor supply choices have implications for their exposure to contagion.  
 

 
5 See also Kaplan, Moll and Violante (2020). 
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But there are several differences between those papers and ours. The main focus of Eichenbaum 
et al. and Jones et al. is on describing and quantifying dynamic implications, while our goal is to 
clarify and explore the channels through which policy can affect behavior and therefore the 
transmission of infection.  
 
Perhaps most consequential for policy are differences in the specific way economic activity 
affects contagion. Eichenbaum et al. and Jones et al. both assume that contagion increases with 
the levels of aggregate consumption and production. They do not provide a microeconomic 
justification for that assumption, but simply take it as a reduced form.  
 
In contrast, our paper provides an explicit environment where SIR-type dynamics emerge 
endogenously. This difference turns out to matter. For example, in Eichenbaum et al. and Jones 
et al., increasing consumption taxes during the contagion phase of a pandemic reduces 
infections, which is an argument in favor of such a policy. In our model, consumption taxes have 
no impact on individual choice and therefore no effects on contagion dynamics. 
 
The gravity of the Covid-19 epidemic has motivated a myriad of policy proposals. An influential 
collection is Baldwin and Weder di Mauro (2020). Loayza and Pennings (2020) provide a useful 
policy overview, with emphasis on developing countries. Gourinchas (2020) discusses the need 
to coordinate economic responses and health policy, but he does not provide a formal analysis.  
 
Macroeconomics aficionados will recognize a close connection between our analysis and the 
influential Lucas (1976) critique of econometric policy evaluation. For a given set of economic 
and health policies, any equilibrium of our model implies that infection dynamics are similar to 
those of the SIR model, whose parameters are a function of “deeper” underlying aspects of the 
environment, including policies. An implication is that the SIR parameters must change if policies 
change. That is not simply a theoretical curiosity. Rather, it is critical for policy analysis.  
 
Lucas argued that macroeconomic policy based on reduced form econometric equations, 
especially the Phillips Curve, was unsound, because the parameters of those equations would 
shift as people changed behavior in response to policy. Strikingly, he showed that this would be 
the case even if the predictive power of the econometric equations, estimated from data from 
previous episodes, was strong: the equations would become unstable and the parameters 
change in undefined ways when new policies were implemented. Substitute “reduced form 
econometric equations” for “SIR equations” and the Lucas Critique applies with force to the 
current situation. This is one key takeaway from our paper.  
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9. Final remarks 
 
The success or failure of public policies to fight the pandemic will depend on whether those 
policies induce socially-desirable patterns of behavior among ordinary citizens. And how people 
choose to behave in turn depends on a myriad of factors, including not only expectations of 
future policies, but also expectations of how other people will respond to those policies.  
 
This paper provides a minimal model to understand the feedback loops involving economics, 
public health and expectations. One lesson is that is easy for things to go frightfully wrong. If 
people come to be pessimistic —for instance, about the extent of contagion or the future health 
of the economy— they can react in ways that will make that pessimism self-fulfilling.  
 
But another lesson is that there are policies that can potentially avoid those pitfalls. This paper 
has studied and characterized some of those policies in a minimal setting. Doing so in a richer 
environment, where the quantitative aspects of those policies can be explored more fully, is 
clearly a priority for future research.  
 
We claim that economic policy can change the dynamics of contagion via its impact on incentives. 
How important is that link likely to be in practice? Several aspects of the current crisis suggest it 
can be quite important indeed.  
 
Look at the massive change in recent projections of Covid-19 deaths in the United States. As 
recently as the end of March, the Trump administration was publicly projecting virus-related 
deaths between 100,000 and 240,000 by the end of the U.S. Summer. Less than two weeks later, 
the official estimate came down to just 60,000. This much-lower number is comparable to the 
usual number of deaths caused by influenza every year.  
 
What explains the astonishingly large and sudden change in the official estimates? According to 
health officials and commentary by public health experts, the previous dire predictions assumed 
low compliance rates with lockdown and social distancing measures. That assumption turned out 
to be wrong: compliance by the U.S. population has been much better than expected, and that 
accounts for the bulk of the change in death estimates.6 
 
This is, of course, encouraging news. The main point, however, is that whether or not people 
adhere to instructions to stay at home is crucial for the number of deaths from the virus. It is less 
obvious that those individual decisions are likely to influenced by economic factors and policy 
incentives. In fighting the pandemic, policymakers and economists will be well served by 
remembering that fact and its implications.  
  

 
6 This is an ongoing debate that has been widely reported by the press. See, for example, “US Coronavirus Predictions 
Have Shifted. Here is Why”, CNN.com, April 9 2020.  
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Appendix 1 
 
Welfare is 
 

𝑊 = [𝑞 + 𝑝(1 − 𝑞)ℎ,]𝑤, + [(1 − 𝑞) − 𝑝(1 − 𝑞)ℎ,]𝑒, + ℎ4𝑤4 + (1 − ℎ4)(𝑒4 − 𝜒) 
 
Using the transition equation GDP can be written as 
 
𝑊 = 𝑒, + 𝑒4 + [𝑞 + 𝑝(1 − 𝑞)ℎ,](𝑤, − 𝑒,) + [ℎ,	 − 𝜙𝑞(1 − ℎ,	)](𝑤4 + 𝜒 − 𝑒4) − (1 − ℎ,	)𝜒 

 
It follows that  

𝜕𝑊
𝜕𝑝 = (1 − 𝑞)ℎ,(𝑤, − 𝑒,) − 𝑞(1 − ℎ,	)(𝑤4 + 𝜒 − 𝑒4)

𝜕𝜙
𝜕𝑝  

 
which, substituting in the value of  JK

JL
, becomes 

 
𝜕𝑊
𝜕𝑝 = (1 − 𝑞)ℎ,[(𝑤, − 𝑒,) − (𝑤4 + 𝜒 − 𝑒4)(1 − 𝜙)@] 

 
So 𝑊 can be either increasing or decreasing in 𝑝.  
 
Notice also that  
 

𝜕@𝑊
𝜕𝑝@ = 2(1 − 𝑞)ℎ,(𝑤4 + 𝜒 − 𝑒4)(1 − 𝜙)

𝜕𝜙
𝜕𝑝  

 
𝜕@𝑊
𝜕𝑝@ =

2(𝑤4 + 𝜒 − 𝑒4)(1 − 𝑞)@ℎ,	
@(1 − 𝜙)M

𝑞(1 − ℎ,	)
> 0 

 
So if (𝑤4 + 𝜒 − 𝑒4) 	is sufficiently large relative to (𝑤, − 𝑒,), 𝑊 is a U-shaped function of 𝑝, with 
a minimum at  

𝜙 = 1 − =
𝑤, − 𝑒,

𝑤4 + 𝜒 − 𝑒4
>
4
@
 

 
Finally, note that welfare if 𝑝 = 0 is 
 

𝑊(𝑝 = 0) = 𝑒, + 𝑒4 + 𝑞(𝑤, − 𝑒,) + ℎ,	[1 − 𝑞(1 − ℎ,	)](𝑤4 + 𝜒 − 𝑒4) − (1 − ℎ,	)𝜒 
 
and, if 𝑝 = 1 , it is 

𝑊(𝑝 = 1) = 𝑒, + 𝑒4 + [𝑞 + (1 − 𝑞)ℎ,](𝑤, − 𝑒,) + ℎ,	 N
ℎ,	

ℎ,	 + 𝑞(1 − ℎ,	)
O (𝑤4 + 𝜒 − 𝑒4)

− (1 − ℎ,	)𝜒 
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Appendix 2 
 
From the above, it follows that 
 

𝑊(𝑝 = 0) −𝑊(𝑝 = 1)

= (1 − 𝑞)ℎ,	 P(1 − ℎ,	) Q
𝑞(1 − ℎ,	)

ℎ,	 + 𝑞(1 − ℎ,	)
R (𝑤4 + 𝜒 − 𝑒4) − (𝑤, − 𝑒,)S 

 
So from the point of view of the planner it is best to set 𝑝 = 0 and keep everyone home if  
 

𝑤, − 𝑒,
𝑤4 − 𝑒4 + 𝜒

< 𝛾(1 − ℎ,	) 

where 
 

𝛾 =
𝑞(1 − ℎ,	)

ℎ,	 + 𝑞(1 − ℎ,	)
< 1 
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Health care practitioners around the globe have observed that the 
COVID-19 crisis has been associated with an unprecedented decrease 
in non-COVID-19 visits to emergency departments. We corroborate 
this observation using administrative daily data from Chile and 
study the potential causes for this decrease. To that end, we merge 
regional emergency visits with Google mobility data and show that 
the crisis-induced changes in mobility patterns explain a significant 
portion of the overall drop in nonrespiratory emergency room visits, 
especially for visits related to trauma and poisoning. Our results 
reveal that an important reason for the dramatic drop in non-
COVID-19 utilization of emergency care is the lower incidence of 
emergencies. This result suggests that lockdown measures may have 
the unexpected benefit for public health of freeing up healthcare 
resources to confront the pandemic.
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1 Introduction

Emergency care utilization around the globe has plummeted after the onset of the COVID-

19 pandemic (Garcia et al., 2020; Rodríguez-Leora et al., 2020).1 The leading explanation

offered by health care practitioners for this phenomenon is that many patients, some with

potentially serious conditions, have stopped going to the emergency department (ED) due to

fear of contracting the novel SARS-CoV-2 virus at the hospital.2 However, another cause of

the drop in emergencies is that individuals were confined to their homes and stopped working,

commuting, or exercising outdoors. The large decline in these activities brought about by

the pandemic could have lead to a decrease in accidents and other health emergencies related

to these activities. Therefore, part of the drop in emergency care utilization could have been

due to the decrease in risky behavior and the subsequent decrease in the need of emergency

care.

Disentangling these two explanations is important because they each contain different

implications for population health in the short and medium run and also for our under-

standing of the role played by the policies surrounding the pandemic. On the one hand, if

most of the decrease was due to a lower willingness to visit the ED—for instance, due to fear

of contracting the virus—the pandemic could have dire consequences on population health

well beyond the direct health effects of the SARS-CoV-2 virus due to worsening conditions

of the untreated patients. On the other hand, if most of the decrease in ED visits was due
1For instance, according to NHS England figures, in March 2020, the number of people attending Accidents

and Emergency departments in English hospitals was down 29 percent from the same month the previous year
– about 1.5 million in March 2020, compared to nearly 2.2 million in March 2019. Emergency admissions
were also down, falling by 23 percent on last March, to nearly 428,000 (“Coronavirus: A&E visits drop
sharply as calls to 111 double,” Philippa Roxby, BBC News, April 9, 2020)

2See, for example, reports in New York: “Amid the Coronavirus Crisis, Heart and Stroke Patients Go
Missing, Gina Kolata, The New York Times, April 25, 2020; New Haven: “Hospital admissions for strokes
appear to have plummeted, a doctor says, a possible sign people are afraid to seek critical help,” Kevin
Sheth, The Washington Post, April 9, 2020; Michigan: “ER visits drop amid COVID-19 outbreak; doctors
fear patients avoiding hospitals during pandemic,” Jim Kasuba, News-Herald, April 14, 2020; Vancouver:
“ER doctors worry people with serious health concerns are avoiding the hospital,” Randy Shore, Vancouver
Sun, April 22, 2020; England: “Fears that seriously ill people are avoiding A&E as numbers drop,” Sarah
Marsh, The Guardian, March 27, 2020; Chile: “Qué pasa con las urgencias? Atenciones bajaron 51% desde
la llegada del covid-19,” Max Chavez, El Mercurio, April 20, 2020.
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to a lower incidence of accidents and health conditions that required an emergency visit, the

negative consequences associated with lower utilization would be muted. Importantly, this

cause would indicate an overlooked benefit of lockdowns for public health, as they free up

healthcare resources to confront the pandemic. Moreover, by assessing the relative impor-

tance of each explanation we can also uncover what specific factors contributed to a much

lower use of emergency care after the onset of the pandemic relative to “normal times.”

In this paper, we shed light on the causes of the drop in emergency care visits by quan-

tifying the fraction of the drop that can be explained using data on high-frequency (daily)

mobility in Chile. Mobility data is an observable proxy for social and economic activity that

is, in principle, related to the incidence of some types of emergencies. Therefore, the extent

to which the decrease in mobility can explain the decrease in emergency care provides a lower

bound for the share of the reduction in emergency care utilization that can be explained by

lower social and economic activity as opposed to changes in willingness to visit the ED.

We start by documenting large declines in ED visits in Chile that occurred following the

adoption of initial measures aimed to increase social distance. Similar to what has been

reported elsewhere, we observe substantial decreases across several subgroups of ED cases.

During the period of analysis, total non-respiratory ED visits declined by 49 percent. This

decline includes a 25 percent reduction in visits related to heart attacks and a 54 percent

decline in visits related to trauma and poisoning.

To examine the relationship between ED visits and mobility, we combine daily data on

emergency room utilization with daily mobility patterns recently released by Google. Based

on the daily variation in mobility before the adoption of social distance measures (the “pre-

COVID-19 period”), we estimate a simple and parsimonious model that relates daily mobility

patterns with ED visits in the pre-COVID-19 period. Then, we compare the actual visits to

those predicted by the model under the mobility patterns observed during the pandemic. In

other words, we “train” our data during the pre-COVID-19 period to investigate the extent

to which the decline in ED visits during the pandemic can be predicted with the observed
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changes in mobility.

We find that a simple linear model relating emergency visits to the six mobility measures

provided by Google allows us to predict 42 percent of the decline in non-respiratory visits

after the onset of the pandemic. We further investigate the ability of the model to predict

the decline in two selected subgroups of ED non-respiratory cases, trauma and poisoning,

and heart attacks, for which we can predict 95 percent and 90 percent of the respective

drop using our OLS specification. However, the mobility variables only poorly explain the

levels of heart attack visits, and the ability of our model to predict their drop is highly

dependent on the specification. Using a flexible lasso, higher polynomials, and interactions

of the mobility variables with regional effects, we are able to predict 60 percent of the overall

drop in non-respiratory cases and all of the drop in trauma and poisoning, but none of the

drop in heart attacks.

The Chilean context is well-suited for this analysis for three important reasons: First,

detailed ED data is available daily at the hospital level, which allows us to construct a

high-frequency panel at the regional and type-of-emergency levels that we combine with

the mobility data. Second, during the period of our analysis the spread of the virus was

well contained in the country so hospitals operated well below their capacity during the

pandemic. Excess capacity of hospitals and ED rooms helps us rule out unmet demand due

to supply-side factors. Finally, the drop in ED visits in Chile is comparable in magnitude

to the decrease reported elsewhere, which suggests that our results are informative to other

countries as well.

Our paper contributes to a growing body of empirical research analyzing the impacts of

the lockdown measures implemented to confront the COVID-19 pandemic. This literature

has been mostly focused on analyzing its impact on the spread of the disease (Fang et al.,

2020; Juranek and Zoutman, 2020; Qiu et al., 2020).3 Alexander and Karger (2020) study

the effect of the lockdown on consumption. Our paper provides novel insights by showing
3Farboodi et al. (2020) show that individual’s optimizing behavior generated social distance before shelter-

in-place restrictions came into effect.
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that lockdowns generate positive public-health externalities by reducing the demand for

emergency room services.4

In addition to providing insights specific to pandemics like the COVID-19 crisis, our

paper also connects to broader questions in health economics and health care policy. First,

our paper contributes to the debate regarding the productivity of health care spending. The

large drop in ED visits brought about by the pandemic and the lockdown measures could

suggest that a large fraction of pre-COVID-19 emergency-room visits were only marginally

beneficial to patients. In fact, several studies have argued that many ED cases are actually

non-urgent and thus could be handled in less expensive, regular physician visits without any

deterioration in the patient’s condition.5 Our findings suggest that the lower incidence of

conditions due to lower exposure to risk played an important role in this decrease bounding

the role played by behavioral responses related to the decision to go to the ED.

Second, this paper is also related to the literature on countercyclical health, which sug-

gests that the economic downturns can improve health by decreasing working hours and

changing individual’s allocation of time and health behavior (see, e.g., Ruhm, 2000, 2005a,b,

2007; Evans and Moore, 2012), by their effect on traffic (He, 2016; Rodríguez-López et al.,

2016), or due to countercyclical quality of health care (Stevens et al., 2015). Our results

show that lower social and economic activities, as measured by mobility patterns, decrease

the incidence of health conditions that lead to emergency room visits.

The paper is organized as follows: Section 2 presents a brief summary of the unfolding of

the pandemic in Chile. Section 3 introduces the data. Section 4 documents the decrease in

ED visits in Chile. Section 5 presents our main empirical strategy and the results. Section

6 concludes.
4Adda (2016) provides a comprehensive analysis of the economic costs of infections and a cost-benefit

analysis of social distancing interventions.
5The OECD reports that between 12 and 56 percent of ED visits in OECD countries are non-urgent

(James et al., 2017) and these represented $38 billion per year (Delaune and Everett, 2008) in the U.S. One
potential explanation is that patient preferences for seeking emergency care are high because of the access
to a wide array of medical services is accessible 24 hours a day, 7 days a week (Durand et al. (2012)). An
important caveat is that there is a not a clear consensus of what an urgent visit is. See Durand et al. (2011)
for a review of the classification methods used in the health literature and their implications.
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2 The COVID-19 crisis in Chile

The confirmation of the first case of COVID-19 in Chile occurred on March 3, 2020. On

March 15 the government announced the first set of measures restricting mobility. All these

measures started on March 16, and mainly contemplated a nationwide closing of schools and

educational establishments, restaurants, and movie theatres, as well as forbidding events

with more than 50 people. Further measures adopted were a national night curfew between

10 PM and 5 AM starting on March 22, and localized lockdowns in specific municipalities

starting on March 26.6 On March 23, when there were were 93 total positive cases, the first

death related to COVID-19 was identified.

Figure 1 shows the evolution of COVID-19 cases and deaths over time. By April 14 the

total number of cases and deaths were 7,525 and 82, respectively. 7 We include a dashed

vertical line on March, 13 which we use to mark the onset of the crisis in Chile. On March

13 (two days before the nationwide lockdown measures) the national cumulative number of

cases was only 33, and there were no COVID-19-related deaths reported. However, cases

and deaths started to increase rapidly afterwards.
6Lockdowns were implemented selectively. Due to their initial higher contagion rate seven municipalities

of the Santiago metropolitan area were under a total lockdown that lasted fifteen days. People under
lockdown were required to obtain a special permit to move from one location to another. Later, thirteen
additional municipalities across the country were under temporary lockdown at some point between March
30 and April 23.

7These figures are fairly low (both in absolute terms and in a per-capita basis) compared to the spread
of the pandemic in other OECD countries.

62
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 5

7-
84



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure 1: Number of COVID-19 cases in Chile
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Note: The graph shows the number of new daily cases, the number of cumulative cases, and the number

of deaths of COVID-19 in Chile. Dashed vertical line is plotted on March, 13 and indicates the last

weekday before the first of set of mobility restricting measured were adopted. Data from Department

of Epidemiology, Ministry of Health, Government of Chile; via https://github.com/maibennett and

Our World in Data https://ourworldindata.org/coronavirus.

3 Data

Our main empirical analysis combines daily administrative data on ED admissions with daily

data from the Google Community Mobility Reports. Table 1 summarizes the data we use in

this paper.

3.1 The Google Community Mobility Reports

The Google Community Mobility Reports use mobile geo-locations to compute an index of

the time spent by users in six different categories of places: retail and recreation, grocery

and pharmacy, parks, transit stations, workplaces and residential. The report shows how

visits and length of stay at different places differ with respect to a baseline. The baseline is
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the median value, for the corresponding day of the week, during the 5-week period between

January 3 to February 6, 2020. The mobility data is available from February 15, 2020. In

this paper, we use data up to April 11, 2020. The data were released by Google in an effort

to inform the debate around COVID-19. The data is available at the daily-level for all 16

Chilean regions.8 In the Appendix we show plots of the time series of each mobility index

in the six categories of places for our period of analysis. Beginning on March 13, there is a

sharp decrease on time spent in most categories, except for residential. These plots reflect

nationwide compliance with government measures that aimed to increase social distance

among the population. For comparison, we also show how the mobility indexes compared

to those in the U.S. We find that the mobility in Chile decreased in most categories much

more than in the U.S., especially in retail and recreation, and in grocery and pharmacy.

3.2 Emergency Visits

The data for emergency visits comes from daily public reports by the Chilean Ministry of

Health. The data shows the number of ED visits in each hospital in Chile, split by categories

of related diagnoses.9 In 2020 and before the COVID-19 crisis, the average day-region had

2,795 ED visits. In this paper we focus on non-respiratory visits, which accounted for 84

percent of the total visits in the period of analysis.10 Within the non-respiratory visits, we

show results for two sub-categories of interest: trauma and poisoning, that correspond to 16

percent of cases, and heart attacks (or acute myocardial infarction, AMI) which account for

0.1 percent of cases. Trauma and poisoning cases are interesting because they constitute in

our dataset the largest well-defined cause of ED visits and because we expect this category

to be strongly related to mobility patterns. We also focus on AMI due to the several recent

media reports highlighting the drop in this category, and the report of recent cases where
8Regions are the main sub-national administrative units.
9The cases are classified using the ICD classification method. Each category in the data corresponds to

related ICD codes.
10We exclude all respiratory causes from our analysis that contain acute bronchitis (J20-J21), influenza

(J09-J11), pneumonia (J12-J18), and other respiratory causes (J22; J30-J39, J47, J60-J98).
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Table 1: Descriptive statistics by period of analysis

Before March 13 Post March 13
Panel A: ED visits
Total Non-respiratory: 2,328.82 1,183.35

(177.67) (342.48)
Heart Attacks 2.77 2.08

(1.57) (1.61)
Trauma or Poisoning 378.22 175.86

(45.93) (57.68)
Panel B: Mobility Index

Residential 0.68 19.57
(1.70) (6.68)

Workplaces 4.36 -34.63
(9.36) (17.31)

Retail and Recreation 1.13 -56.57
(7.48) (18.34)

Grocery and Pharmacy 3.67 -32.98
(6.57) (19.20)

Parks -5.99 -58.60
(17.81) (12.90)

Transit Stations 0.74 -54.12
(8.52) (17.46)

Notes: Panel A shows average daily number of emergency daily visits by region in each category. Panel
B shows average Google Community Mobility Report indexes by region in the different categories.
Both panels show summary statistics before and after March 13. Standard deviations are reported in
parenthesis.
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individuals have suffered an AMI and have not sought timely ED care. In addition, AMIs are

likely among the most severe well-defined cause that individuals go to the ED for. However,

AMIs constitute only a very small fraction of the ED visits in Chile.

4 The Decrease in Emergency Visits

As in many other countries, there was a sharp drop in emergency visits in Chile after the

beginning of the pandemic, in mid-March 2020. Figure 2 shows the total number of all

non-respiratory ED visits in Chile for 2019 and 2020. These visits decreased on average from

37,592 before the pandemic to 19,109 after the beginning of the pandemic, which represents

a drop of 49 percent.

To quantify the drop in ED visits we estimate a difference-in-differences model. For each

diagnosis k, we estimate the regression equation

Ydkr = βCOVID-19k + µdow,k + νmk + τyk + αrk + εdkr (1)

where d is the day counted after January 1, y is year, m is month of the year and r is region.

We present the results in Table 2. We find a statistically significant drop in the three cat-

egories. The beginning of the COVID-19 pandemic led to a decrease of 1,290 non-respiratory

emergency visits, of which 240 and 0.76 were due to trauma and poisoning and AMI, re-

spectively. These figures represent 52, 61, and 25 percent of the average number of regional

daily visits in the pre-pandemic period for three categories, respectively.11

5 Empirical Analysis

The goal of the empirical analysis is to quantify the share of the decline in emergency room

visits that can be explained by changes in risk exposure to accidents or non-COVID-19
11For AMI, in which the mean is close to zero, a Poisson model with a similar specification results in an

estimate of -0.285 and standard error of 0.065.

66
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 5

7-
84



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure 2: Emergency Room Visits in Chile in 2019 and 2020
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Note: The graph shows total emergency visits in Chile for the days after the first Wednesday of the
year for the years 2019 and 2020 (January 2 and January 1, respectively) in different categories. The
vertical line indicates March 13, 2020, which indicates the date when COVID-19 started spreading.

Table 2: Effect of the pandemic on emergency visits - by category

(1) (2) (3)
All Trauma Acute

Non-Respiratory and Poisoning Myocardial Infarction

COVID-19 Spread -1290.15** -240.01** -0.76**
(456.65) (85.85) (0.27)

N 3150 3150 3150
R-Squared 0.19 0.20 0.01
Mean Dep. Variable 2,506.19 396.61 3.02

Note: The table shows the effect of the pandemic spread on total emergency room visits in Chile
between January 1 and April 14, where we use 2019 as the control group for 2020. The estimation
includes day of the week, month of the year, year, and regional fixed effects. The mean dependent
variable includes only observations before March 13 in 2019 and 2020. Clustered standard errors in
parentheses. * p<0.10, ** p<0.05, *** p<0.01
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diseases, as proxied by an observable set of indicators. If most of the decline in visits is

predicted by changes in these observables, the decrease in ED visits attributed to a decline

in individuals’ willingness to visit the ED would be small. In this case, the decline would

be mostly attributed to a lower incidence of conditions that warrant a visit to the ED.

Alternatively, if the drop in ED visits cannot be explained by these observables, the drop in

the ED would be explained by unobservable factors that include, among others, changes in

attitudes towards visiting the ED because of the fear of contracting the SARS-CoV-2 virus

at the hospital.

Our approach consists of using the pre-COVID-19 period to infer the relationship between

mobility (as a proxy for social and economic activities and risk exposure) and the various

types of ED visits. We then use the empirical relationship between those two variables in

the pre-COVID period to predict the number of emergency room visits in the period after

the onset of the COVID crisis. That is, we use the data before March 13 as our ‘training’

dataset, from which we estimate the parameters relating mobility with emergency visits,

and use those estimates to construct the emergency visits predicted by the model under the

post-COVID-19 mobility patterns.

Figure 3 provides a simple explanation of our approach. The figure plots the Z-score of

the mobility to transit stations measure against the Z-score of the trauma and poisoning

visits in the capital city (Santiago). Z-scores for the entire sample period are based on the

means and standard deviations in the pre-COVID period. Therefore, the magnitude in both

axis corresponds to the deviation of a particular measurement with respect to the pre-COVID

mean as fraction of the pre-COVID standard deviation.
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Figure 3: Normalized Mobility and Normalized Trauma and Poisoning in Santiago

Note: The figure shows a binned scatter plot of the normalized (Z-score) transit stations mobility

and normalized (Z-score) trauma and poisoning emergency visits in the Metropolitan region (Santiago

and its surroundings). The normalizations use the corresponding pre-March 13 mean and variances in

Santiago. The straight lines represent the linear fit for each period.

In the case of a simple univariate model for ED visits, our empirical strategy would

consist of (i) estimating the slope β̂pre using the pre-COVID period, and (ii) using β̂pre to

project the linear relationship up to the mean mobility in the post-COVID period Z̄M,post.

The share of total change in average visits Z̄Y,post− Z̄Y,pre that is explained by the change in

mobility corresponds to β̂pre(Z̄M,post − Z̄M,pre). As we discuss in more detail in Section 5.4,

this decomposition is akin to the ‘three-fold’ Blinder-Oaxaca decomposition of gender wage

gaps used in the labor economics literature.12

Our main empirical strategy uses the insight described in Figure 3, but allows for a
12In principle we could also perform a decomposition of the pre/post-March 13 differences using the 2019

data. However, the analysis would require assumptions on mobility patterns and their impact on emergencies
in 2019 (which we do not observe).
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flexible relationship between ED visits and the six different mobility indices included in the

Google Mobility Reports.

5.1 Model Specification

We posit a simple linear model for non-respiratory and trauma and poisoning visits in day

d, for diagnosis k and region r:

Ydkr = fkr(Mdr) + µdow(d),k + εdkr (2)

where fkr is a type- and region-specific function, Mdr ∈ R6 is a vector containing the daily

measures of the Google Mobility Report in the six categories of places, and µdow(d),k are

type-specific dummy for the day of week (Monday, Tuesday, etc.).

In our first specification we use a parsimonious linear model for fkr: fa
kr = αkr +∑6

j=1 βkjMdrj + µdow(d),k + εdkr. We estimate the coefficients of this first specification via

OLS. In our second specification we allow fkr to contain the squared terms of the mobility

indexes and a full set of interaction terms between the region and the mobility indices as well.

The specification thus becomes: f b
kr = αkr + ∑6

j=1 βkrjMdrj + ∑6
j=1 βkjM

2
drj +µdow(d),k + εdkr.

We estimate this model via lasso. In addition, to account for the low incidence of heart

attacks we estimate Poisson (count) models with similar specifications for AMI visits that

we either estimate via maximum likelihood or by lasso.13

As noted above, we estimate the model using the 2020 data for the pre-COVID-19 period

only. Then, we compute the predicted values, Ŷdkr, for the entire sample: the pre-COVID-

19 period (in-sample prediction); and post-COVID-19 period (out-of-sample prediction).

Finally, we compute the country-level predicted totals as the sum of the regional predictions

Ŷdk ≡
∑

r Ŷdkr.
13We estimate lasso using the implementation of Friedman et al.’s (2010) coordinate descent algorithm.

We use Townsend (2018) for the linear models and the R glmnet package for the Poisson models. Also, in
reality we implement elastic net, which is a generalization of lasso, but the elastic-net penalty found by the
algorithm is the same as lasso’s for the linear models.
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5.2 Pre-COVID-19 relationship between ED and mobility

We estimate Equation (2) in the pre-pandemic period. We find that the mobility data

is strongly correlated in the pre-COVID-19 period with non-respiratory and trauma and

poisoning emergencies, but not with AMI visits. The F statistic (and its corresponding

p-value) for the joint test that the six coefficients of the mobility variables equal zero in

the pre-COVID-19 (training) sample (βk1 = βk2 = ... = βk6 = 0) are F = 11.37(0.00),

F = 7.67(0.00), F = 2.50(0.02) for the non-respiratory, the trauma and poisoning, and the

heart attacks visits, respectively. We show the estimation results in the Appendix.

5.3 Post-COVID predictions

We present the predicted ED visits for our selected subgroups of ED cases in Figure 4. Each

panel in the figure presents (i) the actual time series, (ii) the prediction from a model that

only includes day-of-week and region fixed effects, and omits the mobility data; (iii) the OLS

(or Poisson) prediction, and (iv) the lasso prediction.

We find that the mobility patterns explain a large fraction of the decrease in the emer-

gency visits for all non-respiratory visits, and trauma and poisoning emergencies among

them, cases where the mobility is highly correlated with emergencies in the pre-COVID-19

period. For the case of AMI visits, the models do a worse job predicting the number of visits.

We think this is natural because AMIs are less dependent than the other types of ED visits

we study on the mobility indexes.14 We provide numbers for the share of the explained drop

in the next subsection.

5.4 Decomposition

We formalize the graphical analysis with a decomposition of the differences in emergencies

across periods using the Oaxaca-Blinder method. This method, derived by Blinder (1973)
14The lasso predictions are somewhat sensitive to the seed choice. In the Appendix we show lasso results

with different initial seeds.
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Figure 4: Actual and Predicted Emergencies by Type
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Note: The vertical line represents divides the period that was used for prediction and the actual
prediction using Google’s Community Mobility Reports and regional fixed effects. Lasso and Elastic
Net predictions are equivalent for all non-respiratory and trauma or poisoning categories.

and Oaxaca (1973) is traditionally applied in labor economics to study the wage gap across

groups (e.g., males vs. females) by decomposing the gap into the part that can be explained

by observable characteristics (e.g., differences in ‘endowments,’ such as education in the

gender wage gap literature) and the part of the gap that cannot be explained by observables.

We apply the same logic to decompose differences in average visits across the two groups of

observations defined by the calendar time: the group of post-March 13 days and the group

of pre-March 13 days. The goal of the decomposition is to quantify the part of the difference

in average visits across the two groups that can be explained by the model, particularly by

72
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 5

7-
84



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

the mobility variables.

To simplify the notation, we rewrite the general model for average visits in each period

as:

E[Ypre] = X̄ ′
preβpre

E[Ypost] = X̄ ′
postβpost

A “three-fold” decomposition of the gap E[Ypre]− E[Ypost] can be written as:

E[Ypost]−E[Ypre] = (X̄post− X̄pre)′βpre + X̄ ′
pre(βpost−βpre) + (X̄post− X̄pre)′(βpost−βpre) (3)

The first part of this decomposition, (X̄post − X̄pre)′βpre, corresponds to the difference

in average visits across periods that can be explained by observables. This component

corresponds to the part of the gap that can be explained by extrapolating the pre-COVID-

19 relationship (βpre) from the pre-COVID-19 average mobility X̄pre onto the post-COVID-19

average mobility (X̄post) (see Figure 3). Consequently, the sum of the second term and the

third term X̄ ′
pre(βpost−βpre) + (X̄post− X̄pre)′(βpost−βpre) corresponds to the part of the gap

that we cannot explain by observables.

Diving each side of Equation (3) by E[Ypre] can re-write the equation as

E[Ypost]− E[Ypre]
E[Ypre]︸ ︷︷ ︸

Difference %

= (X̄post − X̄pre)′βpre

E[Ypre]︸ ︷︷ ︸
Explained by Observables %

+
X̄ ′

pre(βpost − βpre) + (X̄post − X̄pre)′(βpost − βpre)
E[Ypre]︸ ︷︷ ︸

Unexplained by Observables %

,

(4)

which results in the share of the explained and unexplained gap in percentage terms.

Table 3 shows the result of this decomposition, where each panel corresponds to a different

type of ED visit. Panel (a) shows that total non-respiratory visits dropped by 18,327 visits
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per day, a 49.2 percent decrease after the onset of the crisis. Our OLS model predicts a drop

of 7,682. Thus, a simple linear model of the Google mobility indexes predict 41.9 percent of

the drop in the non-respiratory ED visits. Moreover, the lasso regression is able to explain 60

percent of the overall drop. Panel (b) repeats the decomposition for trauma and poisoning.

We find that both the OLS regression and the lasso regression can explain more than 95

percent of the decrease. Finally, Panel (c) shows that the simple Poisson regression can

explain 90 percent of the decrease in AMI. However, we think the AMI result is not very

plausible due both to the contradicting lasso prediction of an increase in 148 percent in AMI

visits and the low OLS F statistic.

Table 3: Decomposition of the Drop in Emergency Visits

1 2 3
Observed Predicted

OLS Lasso
Panel (a) Total Non-respiratory
Before March 13 (A1) 37,051 37,051 37,051
After March 13 (A2) 18,580 29,370 24,288
Difference, in levels (A1-A2) -18,471 -7,682 -12,764
Difference (%) (A1-A2) -49.9% -20.7% -34.4%
Difference Explained by Model (%) - 41.6% 69.1%
Panel (b) Trauma and poisoning
Before March 13 (A1) 6,010 6,010 6,010
After March 13 (A2) 2,754 2,932 2,920
Difference, in levels (A1-A2) -3,256 -3,079 -3,090
Difference (%) (A1-A2) -54.2% -51.2% -51.4%
Difference Explained by Model (%) - 94.5% 100.4%
Panel (c) Acute myocardial infarction
Before March 13 (A1) 44 44 44
After March 13 (A2) 32 34 58
Difference, in levels (A1-A2) -11 -10 15
Difference (%) (A1-A2) -26% -23% 33%
Difference Explained by Model (%) - 86% -148%

Note: The table shows the result of a Oaxaca-Blinder decomposition of the drop in visits into a part
that is explained by the mobility indexes and a part that is not.
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6 Summary and Conclusion

Worldwide, the overall utilization of emergency care has decreased dramatically during the

COVID-19 pandemic. In this paper, we leverage high-frequency data from Chile to show

that observed changes in population’s mobility can explain roughly half of that decrease.

Our results call into question the idea that most of the decrease in ED visits can be

attributed to a widespread fear of attending the ED. By using a simple model we quantify

the portion of the decrease in ED visits that is due to a change in mobility. The portion

of the decrease that is left unexplained by our model includes all other determinants of the

observed drop in ED visits not captured by the mobility measures, such as a decrease in the

willingness to visit the ED due to fear of contracting the virus at the hospital. Therefore,

our findings provide an upper bound to the role that individuals’ behavioral responses in

the decision of whether to go to the ED has played in decreased ED utilization, which are

potentially welfare-decreasing. Moreover, our results suggest that lockdown measures may

have had an unexpected positive effect by freeing up healthcare resources to confront the

pandemic.

Although our results suggest at least 40 to 60 percent of the decrease in emergency room

visits is simply due to a lower need of emergency care, we cannot reject that some portion of

the decrease is due to fear of contracting the virus while visiting the hospital. Even a small

share of fear-induced drop in emergency-care utilization for serious conditions may signify

large welfare losses overall. In particular, the mobility data used in this paper does not

fit well the incidence of heart attacks, and therefore we cannot rule out that an important

fraction of the reduction in emergencies for heart attacks is due to patients with heart attacks

having a lower willingness to visit the hospital. Moreover, a complete assessment of the lower

ED utilization brought about by the pandemic would require data on health outcomes.
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Appendix

A1 Google Mobility Report

The Google Mobility Report shows how visits and length of stay at different places change

compared to a baseline. The baseline is the median value, for the corresponding day of the

week, during the 5- week period Jan 3–Feb 6, 2020. The data was publicly available as of

April 2020 in https://www.google.com/covid19/mobility/.

These changes are calculated using the same kind of aggregated and anonymized data

used to show popular times for places in Google Maps. Mobility trends are split in the

following categories:

1. Retail and recreation: Mobility trends for places like restaurants, cafes, shopping cen-

ters, theme parks, museums, libraries, and movie theaters.

2. Grocery and pharmacy: Mobility trends for places like grocery markets, food ware-

houses, farmers markets, specialty food shops, drug stores, and pharmacies.

3. Parks: Mobility trends for places like national parks, public beaches, marinas, dog

parks, plazas, and public gardens.

4. Transit Stations: Mobility trends for places like public transport hubs such as subway,

bus, and train stations.

5. Work: Mobility trends for places of work.

6. Residential: Mobility trends for places of residence.

More details on how mobility index are calculated can be found in https://www.google.

com/covid19/mobility/data_documentation.html?hl=en#about-this-data.
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Figure A1: Mobility evolution across Chilean regions
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Note: The figure presents the different mobility indexes for the Chilean regions. Each panel shows how visits

and length of stay at different places changed compared to a baseline period. This baseline is the median

value, for the corresponding day of the week, during the 5-week period Jan 3–Feb 6, 2020. The gray lines

indicate different regions, and the black line show the national average. The vertical line indicates March

13, which denote the beginning of the COVID-19 pandemic in Chile.
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Figure A2: Mobility evolution in Chile and the United States
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Note: The figure presents national mobility indexes for Chile and the United States. Each panel shows how

visits and length of stay at different places changed compared to a baseline period. This baseline is the

median value, for the corresponding day of the week, during the 5-week period Jan 3–Feb 6, 2020. The

gray lines indicate different regions, and the black line show the national average. The vertical line indicates

March 13, which denote the beginning of the COVID-19 pandemic in Chile.
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A2 Normalized Mobility and Emergency Visits

We present more examples of binned scatterplots relating (normalized) emergency visits

with (normalized) mobility measures. We show the case of all non-respiratory conditions

and trauma and poisoning for the Metropolitana and the Biobío region, which gather 50

percent of the country’s inhabitants.

Figure A3: Normalized Mobility and ED visits
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(c) Non-Respiratory - Biobío
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Note: The Figure presents binned scatterplots of transit station mobility and emergency visits in the

Metropolitana and Biobío regions of Chile. The dotted lines show a linear fit for observations before

and after March 13, the date of the beginning of the COVID-19 pandemic.
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A3 OLS estimates

Table A1 shows the results of estimating Equation 2 by OLS.

Table A1: OLS estimates

All non-respiratory Trauma and Poisoning Acute Myocardial Infraction
Residential 115.60 -0.85 15.57 2.56 -0.02 -0.10

(104.77) (14.73) (16.87) (2.75) (0.09) (0.07)
Workplaces 11.80 5.91 2.52 3.45*** -0.04* -0.04**

(29.88) (4.68) (4.99) (0.86) (0.02) (0.02)
Retail & Recreation -184.72*** -3.83 -31.08*** -1.49** -0.16*** -0.01

(32.57) (2.51) (5.60) (0.58) (0.03) (0.02)
Grocery & Pharmacy 186.91*** 2.50 34.58*** 1.10 0.14*** 0.01

(45.94) (4.29) (7.87) (0.86) (0.04) (0.02)
Parks 3.39 5.49** 1.81 1.02*** -0.04*** -0.02***

(16.44) (2.33) (2.75) (0.39) (0.01) (0.01)
Transit Stations 56.35*** 1.32 4.89** 2.05*** 0.11*** 0.03*

(13.81) (2.20) (2.31) (0.63) (0.02) (0.02)
Region F.E. N Y N Y N Y
Day-of-week FE N Y N Y N Y
F-stat. 12.13 11.37 8.48 7.67 12.56 2.50
p-value 0.00 0.00 0.00 0.00 0.00 0.02
R2 0.12 0.99 0.12 0.99 0.13 0.68
R2adj 0.11 0.99 0.11 0.99 0.12 0.66

Notes: The table shows the results of a OLS estimation of Equation (2) in the pre-pandemic period.
For comparison purposes, the table shows the results of running an OLS model for AMI visits even if in
the main analysis we estimate a Poisson model for this category. Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.01

A4 Robustness of the Lasso Regressions

Figure A4 shows plots for different seeds of the same lasso specification and the sample

sample as in the main text. These plots are meant to show only the instability in variable

selection in the pre-COVID period for each emergency type and not the standard errors of

lasso.
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Figure A4: Lasso predictions—Actual and Predicted Emergencies by Type
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Notes: The vertical line represents the period that was used for prediction and the actual prediction us-

ing Google’s Community Mobility Reports and regional fixed effects. Lasso and Elastic Net predictions
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We study the impact of non-pharmaceutical policy interventions 
(NPIs) like “stay-at-home” orders on the spread of infectious disease. 
NPIs are associated with slower growth of Covid-19 cases. NPIs 
“spillover” into other jurisdictions. NPIs are not associated with 
significantly worse economic outcomes measured by job losses. Job 
losses have been no higher in US states that implemented “stay-
at-home” during the Covid-19 pandemic than in states that did 
not have “stay-at-home”. All of these results demonstrate that the 
Covid-19 pandemic is a common economic and public health shock.  
The tradeoff between the economy and public health today depends 
strongly on what is happening elsewhere. This underscores the 
importance of coordinated economic and public health responses.
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1. Introduction 

We study the health and economic impacts of non-pharmaceutical public health 
interventions (NPIs) to mitigate the spread of Covid-19. Since emerging in December 2019, 
Covid-19 has spread to nearly all countries in the world. Every state and territory in the USA 
has reported at least one case to date. Theoretical and empirical literature in epidemiology 
and public health has argued that NPIs can be important in decreasing peak mortality and 
cumulative mortality (Hatchett et. al, 2007; Markel et. al, 2007; Bootsma and Ferguson, 2007 
and Barro, 2020).1 Countries, states, and cities recently imposed a number of NPIs to 
enhance social distancing with the aim of mitigating the spread of Covid-19. Have these had 
benefits for public health but at the cost of the economy? 

The economic consequences of public health policies during global pandemics is 
challenging. Global pandemics are rare events (Barro et. al. 2020; Jordà et. al, 2020 and 
Correia et. al). New insights combining economic and epidemiological modeling is emerging 
with new theoretical predictions. The key tradeoff is between public health and the economy 
(Gourinchas, 2020). Aggressive NPIs benefit public health and help manage the pandemic 
with limited medical capacity. NPIs may however damage the economy and create high levels 
of unemployment. But, even without policy, people pay attention to news and events 
elsewhere reacting with spontaneous social distancing (Eichenbaum et. al. 2020; Baldwin, 
2020; Krueger et. al, 2020). There may also be important economic spillovers to NPIs (Beck 
and Wagner, 2020).   

A pandemic can impact an economy in many ways: reductions in people’s willingness 
to work, dislocations in consumption patterns and lower consumption, added stress on the 
financial system, and greater uncertainty leading to lower investment. These are 
respectively referred to as (labor) supply shocks, demand shocks, financial shocks and 
uncertainty shocks. Connected economies and epidemiological communities also move in 
synch. Even a healthy economy, or an economy that has not mandated a shutdown, may feel 
the impact of external events. With the exception of the 1918 influenza, recent pandemics 
have neither had as large of a global impact, nor has there been as much real time data 
available to empirically assess the economic and public health impact of NPIs. We study 
outcomes during the Covid-19 pandemic. 

We have three main results. First, our analysis shows NPIs may have been effective in 
slowing the growth rate of confirmed cases of Covid-19 but not in decreasing the growth rate 
of cumulative mortality. Second, we find evidence of spillovers. NPIs may have impacts on 
other jurisdictions.  Finally, there is little evidence that NPIs are associated with larger 
declines in local economic activity than in places without NPIs.  

                                                            
1 Hatchett et. al. (2007) find NPIS reduce “peak mortality” but mostly statistically insignificant impacts on 
cumulative mortality of NPIs in their sample of 17 cities. Barro (2020) finds the same in a broader sample of 
US cities. 
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The reason we fail to find evidence consistent with a macro-health/economy tradeoff 
is that epidemiological and economic shocks have been common to the US and indeed to the 
world. Our results parallel those of a recent contribution which shows that US cities that 
applied more intensive NPIs in 1918-19 did not suffer greater economic mis-fortune than 
other cities without such policies (Correia et. al, 2020). Moreover, economic policies may 
have un-even impacts on certain economic sectors and types of jobs. We find states with a 
larger share of employment in jobs that can be done at home have lost fewer jobs after stay-
at-home. 

We also address the issue of spillovers in NPI policy and public health: do local 
policies have effects on other jurisdictions and territories? We find they do, at least within 
the United States. This is not true across borders. In light of this, delaying implementation of 
NPIs may have little extra economic benefit when significant trade partners have already 
implemented such policies and when information and disease travels rapidly.  This new 
evidence can account for the lack of a tradeoff between health and the economy. 

A relevant comparison to the Covid-19 pandemic is the 1918 influenza pandemic. A 
significant strand of the literature has developed unique data from this historical pandemic 
in the United States. In 1918 and 1919, NPIs significantly lowered peak mortality rates. Some 
weaker evidence shows that these may have reduced total cumulative mortality in US cities.1 
The recent Covid-19 pandemic and associated implementation of NPIs allows us to gauge 
whether such policies have been effective for public health and if there are economic costs 
to these policies.  

 

2. Methods 

2.1 Data collection 

For public health data in US states, we rely on confirmed cases and deaths of Covid-
19 reported by the New York Times on a daily basis. These data are based on reports from 
state and local health agencies. Confirmed cases and deaths across countries are from the 
Center for Systems Science and Engineering (CSSE) at Johns Hopkins University 
representing a compilation of data reported by the WHO and various countries’ public health 
authorities. We use country and US state-level data beginning in January 2020 up to April 
2020. We have data for over 70 countries and 50 US States + the District of Columbia. 

Data on NPIs at the country level come from the Oxford Covid-19 Government 
Response Tracker (Hale et. al. 2020).  These data cover seven policy responses: School 
closures, workplace closures, cancellation of public events, closure of public transport, public 
information campaigns, restrictions on internal movement, and international travel bans.  
This source reports data from over 100 countries. Data on “stay-at-home” orders for US 
states is from the official orders or announcements made by public health authorities at each 
state.  
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Real-time data that helps understand the macro economy is relatively scarce and has 
only become available in recent decades. Recent research uses real time data from private 
financial (fin-tech) companies to track consumer spending as well as movement based on 
privately collected GPS signals from mobile phones. Such data is subject to measurement 
error, reports for limited and small samples, and cannot be considered as fully indicative of 
the macroeconomic situation (Baker et. al. 2020).  

We use initial claims for unemployment insurance published by the US Department 
of Labor (i.e., initial jobless claims) at the state level on a weekly basis. Each state’s data are 
as of the end of the week (i.e., Saturday).  We use data which are not seasonally adjusted and 
which are subject to revision. Initial jobless claims represent a consistent and reliable 
indicator of the US labor market at the local level, are of reasonable quality, and are often 
used as a leading indicator for macroeconomic forecasts. These data exclude the self-
employed. We also supplement the economic data with information on the employment 
shares in selected industries we believe may be hardest hit in the recent months such as oil 
and gas extraction, retail, food processing/restaurants, wholesale and arts, recreation and 
leisure. We also use information on the share of jobs in a state that can be carried out by 
telecommuting (Dingel and Neiman, 2020). 

 

2.2 Data Analysis 

Our main dependent variables are the daily growth rates of the (natural) logarithm 
of cumulative confirmed cases or deaths of Covid-19. We acknowledge considerable debate 
about measurement error due to variable testing rates across localities. Potential for 
measurement error also exists for the mortality data. There have been cases of deaths at 
home from those not admitted to nor tested in hospitals. Using excess mortality is an option 
but systematic data is not readily available nor directly comparable.    

We also use the logarithm of initial jobless claims at the state-level as a dependent 
variable. Data are not seasonally adjusted since such adjustments apply to all cross-sectional 
units (i.e., states) and are captured in period/day intercepts. Initial jobless claims are subject 
to revision. Our data end with information on the week ending 4 April. The latest revisions 
apply to weeks before and including the week ending 28 March, 2020. 

Country-level NPIs are reported on a scale of 0/1/2. A value of 0 is for “no measure 
in place”.  A value of 1 indicates the NPI is recommended, and a value of 2 is the most 
stringent. We re-code data to take the values of 0 and 1. Here 0 represents both 0 and 1 in 
the raw data, and 1 is a raw value of 2 the most stringent NPI possible.  

State-level NPIs are for so-called “stay-at-home orders”. Such rules vary in their 
particular prescriptions. They typically mandate that people refrain from meeting in groups, 
limit physical social interaction to within households, and that people frequent only essential 
businesses. In person work is allowed only for “essential” businesses.  
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Throughout our paper, we assume that NPIs and their timing are exogenous and 
uncorrelated with unobservables especially expectations about the future path of mortality 
and the expected path of economic and social variables of interest. We also allow for leads of 
NPIs to deal with the issue of reverse causality from mortality to NPIs. 

We allow for policy spillovers by measuring the level of policies in all other states. In 
our international sample, we look at policies of other countries that share a border. Each 
policy in another state (or country) is divided by the centroid-to-centroid distance. For 
robustness we also population weighted each other state’s distance weighted policy. States 
with closer proximity to the observation have a bigger potential spillover since we assume 
economic and social interactions are roughly linear in the log of physical distance with an 
elasticity of -1. The measure for state i of all other states’ NPI policies  is 𝑆𝑆𝑖𝑖,−𝑖𝑖 =
∑ 1(Stay−at−Home𝑗𝑗=1)

distance𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖  . We also introduce the sum of policies in the states which share a 

border with state i, 𝑆𝑆𝑖𝑖,−𝑖𝑖′ = ∑ 1(Stay-at-Homen = 1) 𝑛𝑛  where n indexes states in the set N of 
i’s neighboring states. Similarly, we can control for the confirmed cases of other states with 
distance weighting and in neighboring states. For countries we focus on policies only in 
bordering countries. 

In all models we include controls for calendar weeks, state-level fixed effects and 
event-time trends (linear, quadratic and cubic terms were tested). The event is defined 
either as the number of days elapsed between the current date and the date a state reached 
the first death or first confirmed case of Covid-19. We also cluster standard errors of 
estimated coefficients at the state level.  

 

2. Results 

3.1 Policies and Public Health 

As of this draft, there were over 2.4 million confirmed cases of Covid-19 worldwide. 
The United States (765,000), Spain (200,000), Italy (178,972), France (152,000) and 
Germany (145,000). Reported deaths stood at over 164,000 making this pandemic one of the 
worst in the last 120 years. The average growth rate of global cases since 1/22/2020 (555 
cases) and 4/13/2020 (82 days) was 10.43%. Other reported statistics and information such 
as case fatality rates and overall infection rates are either too preliminary or mis-measured 
to be reliable at this stage. 

On the international scene, the first countries to impose containment and mitigation 
strategies were in East Asia near the epicenter of the first outbreak. Mainland China imposed 
a near total lockdown on Hubei province from late January 2020 and severely limited 
domestic movement in nearly all other provinces from then until the first week of April. 
Singapore, South Korea, Hong Kong, and Taiwan all maintained strict international border 
controls, high levels of contract tracing and testing, and monitoring or closure of 
international borders.  
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Western European nations, first with Italy (March 9th), and successively other 
nations, implemented strict bans on public gathering and domestic and international 
movement. In the United States, states initiated stay-at-home orders progressively beginning 
on 19 March (California) through the first week of April. Iran waited 16 days after its first 
case to put limits on internal/domestic movement. India announced a national shelter-in-
place order on 24 March, 53 days after its first official case, and this was initially intended to 
have a three week duration.   

We first test NPIs as determinants of the growth rate of cumulative cases or death 
rates across countries. On the international scene, in a sample of 73 countries for which we 
have complete and balanced data, we find that various NPIs had a negative and statistically 
significant association on the growth rate of (log) confirmed cases. Table 1 column 7 shows 
that the ordinal sum of the six international NPIs we use could lower the growth rate by 
about 2 log points (-0.0207, p-value=0.007, 95% C.I. -0.03 to -0.005). 

 The policies most strongly and statistically significantly associated with slowing the 
growth rate of (log) confirmed cases in order of magnitude of impact were public transport 
closures (-0.09, p-value = 0.014, 95% C.I. -0.17 to -0.02), enforced workplace closures (-
0.0784, p-value =0.004  , 95% C.I. -0.131 to -0.025), limited domestic travel (-0.-650, p-value 
= 0.060, 95% C.I. -0.132 to 0.003), and restrictions on international travel (-0.0639, p-value 
= 0.009, 95% C.I. -0.11 to -0.016). School closures (p-value = 0.387) and limits on public 
events (p-value = 0.342) are negatively related to growth rates of confirmed cases but were 
not found to be statistically significant.  

For the international sample, five of the six NPIs as well as the cumulative sum of all 
NPIs are not statistically significant determinants of the growth rate of the cumulative 
number of deaths. The only NPI that is significant is the closure of public transportation 
(point estimate: -0.09, p-value = 0.042, 95% C.I. -0.177 to -0.003). In addition the sum of all 
policies has a negative point estimate of -0.0123 (p-value = 0.226 95% C.I. -0.03 to 0.008), 
but it is not significant at conventional levels. Since we are recording event time as days since 
the first death in this table, the sample of countries decreased to 58 from 73 in the sample 
for confirmed cases. The lack of significance here could be due to our short sample and long 
lags between implementation of NPIs and effects on death rates. 

We also tested for spillovers. Are foreign NPIs associated with lower growth rates of 
confirmed cases and death rates? We use the total sum of an NPI indicator across countries 
that share a border as a control in the same regressions as above. We find little evidence of 
an association for the NPIs of neighboring countries. Six of the seven NPIs, and the summed 
value of all NPIs in the international data set, are not statistically significant determinants of 
own-country outcomes for cases and deaths. The only foreign NPI that is a statistically 
significant of growth in cases is the limitation on internal movement in neighboring 
countries (point estimate: -0.043, p-value =0.003 , 95% C.I. -0.068 to -0.015).  

NPIs enacted by US states are negatively correlated with the growth rate of confirmed 
cases of Covid-19. Table 3 shows our regression results. Column 1 of Table 3 shows that a 
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state’s own policy was associated with a reduction of the growth rate of 16.9 log points (p-
value =  0.000, 95% C.I. -0.20 to -0.13). Figure 1 and Figure 2 show the dynamics. We compare 
the change in the growth rate in log confirmed cases in each day after the first day of the 
policy (25 coefficients) and by five-day periods to the pre-policy growth rate. The point 
estimates are progressively larger in absolute magnitude over time. None of the point 
estimates for changes in the growth rate of deaths is statistically significant. We also checked 
for pre-trends and reverse causality by allowing for leads of the NPI. Point estimates of the 
leads were not individually statistically significant. 

We continue our analysis by allowing for policy spillovers between states. Figure 3 
shows the path of confirmed cases for five groups of states corresponding to their calendar 
time adoption of stay-at-home policies. The first group is the first set of states that 
implemented such a policy during the week ending 21 March, 2020.2 The following three 
groups are states that rolled out their stay-at-home orders during the weeks ending 28 
March, 4 April, or 11 April. The fifth group (group 0) consists of states that did not have such 
an order as of April 13, 2020.  

Next we demonstrate graphically how NPIs in group 1 and 2 might have affected other 
groups by plotting changes in trend growth rates of confirmed cases. Figure 3 plots the total 
confirmed cases within a group against event time (event day 0 is the day of the first 
confirmed case). We include two trend lines. This first is the average growth rate of 
confirmed cases since day 0. The second trend is the average growth rate of confirmed cases 
prior to the week in which the first group, group 1, implemented stay-at-home. If group 1 
has an impact on other groups the trend could break here.  

Confirmed cases decelerated following the week in which group 1 acted (groups 0, 2, 
and 3) or after both group 1 and group 2 had acted (groups 1, 4). From these charts, it would 
appear that there are spillovers, and they may be cumulative. NPI policies in group 1 and 
group 2 seem to be especially important for determining growth rates of new cases not only 
in their own states but also in other groups (i.e., 0, 3, and 4).   

We test this more carefully in a linear regression in Table 3.  In these regressions, we 
allow for stay-at-home policies in all other states to matter for state i.  Policies in other states 
are population and distance weighted. We also allow for differential effects of policies in 
neighboring states NPIs in other states with a border state indicator dummy variable, and 
we allow for the level of confirmed cases in other states to affect growth of cumulative cases. 

Own state policies are still associated with lower growth rates of confirmed cases 
after controlling for other state policies. The point is estimate is -0.034 (p-value =0.005, 95% 

                                                            
2 A data appendix available upon request shows the timing for each state and their group. Group 1 includes 
California, Illinois, New Jersey and Maryland. Group includes 27 states including New York, Washington, 
Louisiana, Massachusetts , and Michigan. Group 3 includes 13 states such as Florida and Texas. Group 4 
includes Alabama and Missouri. The non-adopters were: Arkansas, Iowa, Nebraska, and the Dakotas. 
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C.I. -0.057 to -0.011). This is one-fifth of the magnitude of the own-state policy in Table 3 
when we did not control for other state policies.  

Spillovers matter. Policies in other states dating from the week ending March 21st are 
negatively associated with mortality even in states that had yet to impose a stay-at-home 
policy. The association between local growth rates of confirmed cases and the first states’ 
policies is the largest. Column 4 shows the point estimate is -14.77 (p-value = 0.056 95% C.I. 
-29.93 to 0.379). An extra policy (in the first week ending 21 March) at the median distance 
between states is associated with a decline of about one log point or -0.009 (-0.009 = 
(1/1688) x -14.777). A new policy by a neighboring state, with the median in-sample 
centroid-to-centroid distance is associated with a decline of -0.034 (-0.034 = (1/441)*-
14.777). This is about the same magnitude as the own-state point estimate. There is no 
statistically significant differential in the marginal impact of bordering states versus more 
distant states after accounting for distance between state centroids. 

The association for NPI policies in weeks 2, 3 and 4 declines in absolute magnitude 
and statistical significance in columns 2-4. By the fourth week, the marginal effects of policies 
in other states are not statistically significant. This is suggestive of the idea that the first wave 
of stay-at home policies had a bigger impact than later waves.  

We also cannot reject the hypothesis that the level of deaths in other cities (weighted 
by distances between cities) has no relationship with own-city growth rates of deaths ceteris 
paribus.  

 

2.2 Policies and the Economy 

Policy has been theoretically predicted to matter for the economy. A high intensity 
and duration of NPIs is predicted to lower cumulative mortality and peak mortality, but this 
comes (theoretically) at a greater cost to the economy than had NPIs not been imposed. We 
find no evidence of this. In  

Table 4 we show that applications for unemployment insurance (i.e., jobless claims) 
rose at the same rate in states that adopted stay-at-home policies as in states without stay-
at-home. The point estimate is -0.309 (p-value = 0.108 95% C.I. -0.675 to 0.069). Based on 
this, there is no evidence that stay-at-home policies led to stronger rises in jobless claims.  

The results show some interesting dynamics as well showing in fact that stay-at-home 
was potentially associated with lower unemployment. In columns 2 (not population 
weighted) and 3 (population weighted regressions) the association between stay at-home 
policies and jobless claims is statistically significant and negative two and three weeks after 
implementation. The coefficient on the first week is not highly statistically significant. We 
also use six leads of the indicators for stay-at-home. None of these leading marginal effects 
is statistically significant implying that pre-policy trends are unlikely to account for the post-
policy rises in initial jobless claims.  
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We also interact state-fixed effects with the stay-at-home policy which allows for 
heterogeneous impacts by state. A potential concern is that the adoption of stay-at-home was 
economically less costly, and therefore adopted sooner in places where the occupational 
structure allowed telecommuting or where the structure of employment was less sensitive 
to the stay-at-home demand shock. This would bias the impact of such policies downwards. 
For instance, restaurants, retail and other ‘in-person’ services may have been more 
vulnerable to the drop in demand from stay-at-home and states that rely on these industries 
more heavily may have delayed. Figure 4 shows that the association between jobless claims 
and stay-at-home varies by state. It is difficult to see a clear pattern here however. 

We attempt to see where stay-at-home mattered most by checking for a relationship 
between stay-at-home and industry-level employment-to-population shares as well as an 
interaction for the share of jobs in a state that were “telecommutable”.3 We include separate 
effects for industries that are most likely to be “in-person”. For the main effects, we find 
jobless claims grew most strongly in states with higher shares of employment in the leisure 
and recreation industry and in wholesale distribution and smaller where employment 
shares in retail were higher.  

In terms of interactions between industry and stay-at-home there are interesting 
findings. Stay-at-home had a smaller impact on jobless claims where oil and petroleum 
sectors were more prevalent and where arts and recreation had a higher share of 
employment. Other sectors like food preparation, retail sales and wholesale were not 
differentially affected by stay-at-home orders. This suggests common shocks and cross-state 
trade may matter. At the very least, there is little straightforward evidence linking stay-at-
home to industries that are most obviously in-person like retail, food and leisure. 

We do however find a more straightforward interaction with stay-at-home and 
telecommuting. Stay-at-home has a smaller impact I proportion to the share of jobs that can 
be done remotely. When we include a control for this and an interaction effect, the un-
interacted stay-at-home main effect is associated with higher jobless claims with a point 
estimate of 2.55 (p-value = 0.064, 95% C.I. -0.159 to 5.27). However, the interaction with the 
share of jobs that can telecommute is large and negative at -4.93 (p-value = 0.063, 95% C.I. -
10.15 to 0.28). The average share of telecommutable jobs is 0.38 implying that states above 
average and near the top, at a share of say 0.48, felt an impact on jobless claims from stay-
at-home roughly 1/3 as large as states at the mean.  

 

3. Discussion and comment 

 

                                                            
3 These data are from Dingel and Neiman downloaded from https://github.com/jdingel/DingelNeiman-
workathome on April 17, 2020. 
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 We have studied a range of Non-Pharmaceutical Interventions in the early stages of 
the global Covid-19 pandemic. We assess the epidemiological and economic implications of 
these policies. NPIs reduce growth rates of confirmed cases of Covid-19. The reductions 
apply to local jurisdictions but also “spillover” to geographically proximate units. Spillovers 
in policy seem to work more strongly domestically (according to US data) than across 
international borders.  

On average, stay-at-home policies are not associated with higher joblessness in the 
US states that imposed them than in states that did not. We interpret this as evidence that 
the negative economic shocks were national and not local. There is however some evidence 
that stay-at-home has sectoral and occupational impacts. States with more jobs that can be 
done remotely seem to have lost fewer jobs after implementing stay-at-home than states 
with fewer such jobs.  

During Covid-19, NPIs appear to spillover across states in the US data. These 
spillovers could arise due to direct limitations on contact with infected individuals from 
other jurisdictions. However, it could also be because of a psychological or expectational 
effects. We find evidence that policies in the first-moving states matter more for other states 
than policies from later-moving states. This implies that part of the impact is due to reaction 
to news of NPIs in other states. Such news may indicate the severity of an outbreak or a 
pandemic leading to decreases in labor supply and reactive social distancing even without 
policies in the locality. Reduced demand for other states products and services from places 
with stay-at-home could spillover to states without policy too. State-to-state trade or 
shipment data would be required to verify and validate this channel.  

The association between own-state policy and growth of new cases of Covid-19 is 
weakened once accounting for neighboring state policies. This does not imply that local 
policy is un-necessary or fruitless. Indeed, the opposite may be true. Neighbors of states not 
implementing NPIs evidently face greater challenges containing and mitigating disease. This 
implies there is justification for policy coordination if the objective is to mitigate the spread 
of disease and to reduce mortality. Externalities imply coordination as per standard 
economic theory. 

In terms of the tradeoff between the economy and public health, similar lessons apply. 
There is no “free lunch” in a connected and open economy. Once a pandemic is underway 
and some states have implemented NPIs, then the economic spillover is likely to be strong. 
This occurs as NPIs in one state, region or country reduce local demand as well as demand 
for goods and services from other localities. NPIs also disrupt supply chains and contribute 
to a generalized supply shock in an open-economy setting. Information flows between 
localities means non-local policies could limit economic participation and labor supply even 
in localities without NPIs. 

Could a state or locality do better by not implementing an NPI while others did? Free-
riding is tempting, but it may have un-intended impacts. Assume people can move between 
places. States with NPIs, realizing that the pandemic could be more severe globally due to 
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non-compliance with public health recommendations may be forced to keep their own NPIs 
in place longer or more intensively. These NPIs reduce the demand for services and products 
from the non-complier for longer or in greater proportion. The negative impact is in 
proportion to the level of trade and economic inter-dependence between the two areas. 
International retaliation with travel bans on non-NPI territories could also limit the 
economic opportunities of non-complying states.  The economic effects would spillover as 
well. Finally, agents in the non-complying locality may react to information coming from 
other localities. These reactions will have to be stronger and more intense since the local 
outbreak would be more intense than if the locality had implemented an NPI.  
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Table 1 Mitigation Policies and the Growth Rate of Confirmed Cases of Covid-19: Cross Country Evidence  

         

  (1)  (2) (3) (4) (5) (6) (7) (8) 

 
School 

Closures 
Workplace 

Closures 

Public 
Events 
Limits 

Public 
Transportation 

Closed 

Public 
Information 

Campaign 

Domestic 
Travel 

Limited  

International 
Travel Limited  

Sum of all 
policies  

         
Policy -0.0230 -0.0784*** -0.0233 -0.0953** -0.0274 -0.0650* -0.0639*** -0.0207*** 
 (0.0264) (0.0267) (0.0244) (0.0376) (0.0357) (0.0339) (0.0236) (0.00751) 
         
Event time -0.00611** -0.00563** -0.00625** -0.00585** -0.00633*** -0.00590** -0.00524** -0.00452* 
 (0.00259) (0.00239) (0.00249) (0.00248) (0.00234) (0.00236) (0.00257) (0.00247) 
         
(Event time)2 0.0000984*** 0.0000997*** 0.000101*** 0.0000924*** 0.0000991*** 0.000101*** 0.0000926*** 0.0000926*** 
 (0.0000345) (0.0000343) (0.0000342) (0.0000345) (0.0000335) (0.0000341) (0.0000343) (0.0000337) 
         
Constant 0.253*** 0.251*** 0.254*** 0.252*** 0.270*** 0.251*** 0.265*** 0.269*** 
 (0.0318) (0.0311) (0.0319) (0.0316) (0.0434) (0.0313) (0.0315) (0.0307) 
         
         
Observations 2346 2346 2346 2346 2346 2346 2346 2346 
R2 0.108 0.115 0.108 0.112 0.108 0.112 0.112 0.115 

Countries 73 73 73 73 73 73 73 73 

 

Notes: Dependent variable is the daily change in the logarithm of deaths from Covid-19. Estimation is by OLS. All models include country fixed effects 
and calendar day dummies. Event time is defined as number of days since the first official case of Covid-19.  Standard errors in parentheses are 
clustered at the country level. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

 

 

96
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 8

5-
10

6



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 
 

 

Table 2 Mitigation Policies and the Growth Rate of Deaths from Covid-19: Cross Country Evidence  

        

  (1)  (2) (3) (4) (5) (6) (7) 

 
School 

Closures 
Workplace 

Closures 
Public Events 

Limits 

Public 
Transportation 

Closed 

Domestic 
Travel 

Limited  

International 
Travel Limited  

Sum of all 
policies  

        
Policy 0.0340 -0.000391 0.0156 -0.0900** -0.0496 -0.0414 -0.0123 
 (0.0320) (0.0264) (0.0279) (0.0432) (0.0553) (0.0315) (0.0101) 
        
Event time -0.124** -0.119** -0.122** -0.108* -0.118** -0.117** -0.103 
 (0.0581) (0.0587) (0.0576) (0.0563) (0.0573) (0.0575) (0.0624) 
        
(Event time)2 0.0000110 0.00000252 0.00000533 -0.0000169 -0.00000419 -0.000000779 -0.0000230 
 (0.0000289) (0.0000322) (0.0000282) (0.0000299) (0.0000321) (0.0000289) (0.0000356) 
        
Constant 2.107** 2.058** 2.086** 1.897** 2.080** 2.049** 1.864* 
 (0.906) (0.918) (0.902) (0.887) (0.896) (0.901) (0.962) 
        

Observations 948 948 948 948 948 948 948 
R2 0.303 0.302 0.302 0.306 0.302 0.303 0.303 

Countries 58 58 58 58 58 58 58 
 

Notes: Dependent variable is the daily change in the logarithm of deaths from Covid-19. Estimation is by OLS. All models include country fixed effects 
and calendar day dummies. Event time is defined as number of days since the first official death from Covid-19. Standard errors in parentheses are 
clustered at the country level. * p < 0.1, ** p < 0.05, *** p < 0.01  
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Table 3 Change in (log) Confirmed Cases versus Stay-at-Home Orders and Neighboring States’ Stay-at-Home Policies. 

  (1)  (2) (3) (4) 

𝑆𝑆𝑖𝑖  = Stay-at-home -0.170*** -0.0284** -0.0335** -0.0338*** 

 (0.0197) (0.0124) (0.0155) (0.0114) 
     

𝑆𝑆𝑖𝑖,−𝑖𝑖 = (Stay-at-home-i) x week ending 21 Mar.   -4.020 -8.018 -14.78* 
  (2.952) (4.909) (7.538) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖 = (Stay-at-home-i) x week ending 28 Mar.  -2.045** -3.099*** -4.226*** 
  (0.941) (0.997) (1.109) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖  = (Stay-at-home-i) x week ending 4 Apr.  -1.527* -1.684* -2.385** 
  (0.832) (0.894) (1.040) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖 = (Stay-at-home-i) x week ending 11 Apr.  -0.486 -0.673 -1.379 
  (0.892) (0.935) (1.070) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖 = (Stay-at-home-i) x week ending 18 Apr.  -0.273 -0.532 -1.294 
  (0.878) (0.892) (1.035) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖′  =  (Stay-at-home- border states) x week ending 21 Mar.   0.0452 0.0552 
   (0.0457) (0.0464) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖′  = (Stay-at-home- border states) x week ending 28 Mar.   0.0115* 0.0148** 
   (0.00573) (0.00576) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖′  = (Stay-at-home- border states) x week ending 24 Mar.   0.00222 0.00551 
   (0.00563) (0.00579) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖′  = (Stay-at-home- border states) x week ending 11 Apr.   0.00344 0.00556 
   (0.00671) (0.00729) 
     
𝑆𝑆𝑖𝑖,−𝑖𝑖′  = (Stay-at-home- border states) x week ending 18 Apr.   0.00516 0.00712 
   (0.00657) (0.00687) 
     
ln (confirmed cases-i/distance)    0.0516 
    (0.0461) 
     
ln (confirmed cases, border states )    -0.00881 
    (0.0393) 

     

Observations 2175 2175 2175 2175 

R2 0.213 0.282 0.316 0.322 

States 49 49 49 49 

Week Dummies NO YES YES YES 

Notes: Dependent variable is the daily change in the logarithm of confirmed cases of Covid-19. Estimation is by OLS. All models include 
state fixed effects. Event time trend and a quadratic term in event time are included. Event time is defined as number of days since the 
first official case of Covid-19. Week indicators for all weeks after the week ending 28 March are included. The week ending March 21 
is the policy reference group. All regressions are weighted by state population. Standard errors in parentheses are clustered at the 
country level. * p < 0.1, ** p < 0.05, *** p < 0.
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Table 4 Initial jobless claims and the Dynamics of Own-State Stay-at-Home Orders 

 (1) (2) (3) 
    
Stay-at-home -0.309*   
 (0.179)   
    
Stay-at-home (3 weeks after)  -0.629*** -0.494*** 
  (0.230) (0.164) 
    
Stay-at-home (2 weeks after)  -0.427** -0.398*** 
  (0.166) (0.121) 
    
Stay-at-home (initial week)  -0.304 -0.166** 
  (0.188) (0.0782) 
    
Stay-at-home (2 weeks before)  -0.00315 -0.00453 
  (0.124) (0.122) 
    
Stay-at-home (3 weeks before)  -0.0176 0.0286 
  (0.0907) (0.105) 
    
Stay-at-home (4 weeks before)  0.0356 0.0409 
  (0.117) (0.0853) 
    
Stay-at-home (5 weeks before)  -0.0400 -0.00228 
  (0.0509) (0.0651) 
    
Stay-at-home (6 weeks before)  -0.0658* -0.0571 
  (0.0385) (0.0448) 
    
N 459 459 459 
Number of States + DC 51 51 51 
R2 0.975 0.976 0.977 

Notes: Dependent variable is the logarithm of initial jobless claims in the previous week (not seasonally 
adjusted). Estimation is by OLS.  Data is a panel of states + District of Columbia by week. All models include 
state fixed effects and calendar week fixed effects. Regressions (1) and (2) are weighted by state population. 
Column (3) is an unweighted regression. In columns (2) and (3) week t is the first week for the stay-at-home 
order. Week t – 3 denotes three weeks after stay-at-home was initiated, t – 2 two week etc. The week prior to 
initiation of the stay-at-home order is the reference group. Standard errors in parentheses are clustered at 
the country level.  * p < 0.1, ** p < 0.05, *** p < 0.01 
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Table 5 Initial jobless claims, Stay-at-Home Orders and Sectoral Employment 

 (1) (2) (3) (4) 
Stay-at-home -0.303 0.537 2.403* 2.559* 
 (0.185) (0.367) (1.355) (1.353) 
     
Average Share of Jobs-at-home  4.644 6.315 0.0706 
  (3.689) (3.974) (4.373) 
     
Stay-at-home x Average Share of Jobs-at-home    -4.927 -4.937* 
   (3.559) (2.599) 
     
Share of Jobs in Oil & Gas     55.43 
    (169.0) 
     
Share of Jobs in Arts, Rec. and Entertainment    255.8*** 
    (86.32) 
     
Share of Jobs in Food & Accommodation    -10.73 
    (17.72) 
     
Share of Jobs in Retail    -189.4*** 
    (38.91) 
     
Share of Jobs in Wholesale    149.9*** 
    (41.93) 
     
Share of Jobs in Oil & Gas  x Stay-at-home    -316.3*** 
    (89.42) 
     
Share of Jobs in Arts, Rec. and Entertainment x Stay-
at-home 

   -124.7** 

    (55.04) 
     
Share of Jobs in Food & Accommodation x Stay-at-
home 

   -2.579 

    (10.13) 
     
Share of Jobs in Retail x Stay-at-home    9.512 
    (17.31) 
     
Share of Jobs in Wholesale x Stay-at-home    -6.138 
    (27.31) 
N 267 267 267 267 
R2 0.971 0.662 0.663 0.849 

Notes: Dependent variable is the log of initial jobless claims (not seasonally adjusted). Estimation is by OLS.  Data is a panel of 
states + District of Columbia by week. Column (1) includes state fixed effects and all models have calendar week fixed effects. 
Regressions are weighted by state population.  Standard errors in parentheses are clustered at the country level. * p < 0.1, ** p 
< 0.05, *** p < 0.01  
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 Figure 1 Stay-at-Home and the Growth Rate of Cumulative Cases of Covid-19: Dynamics Post-Policy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Chart shows the average level of the daily change in the log of confirmed cases of Covid-19 in periods after implementing a stay-at-home order 
with 95% confidence bars. The levels (dots) are the coefficients from OLS regressions where the dependent variable is the logarithm of confirmed cases. 
Regressions include state fixed effects, event time trend and quadratic effect and calendar day dummies. Event time is counted in days since the first case 
of Covid-19 within a state.  Standard errors are clustered at the state level.   
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Figure 2  Stay-at-Home and the Growth Rate of Cumulative Cases of Covid-19: Daily Dynamics Post-Policy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Chart shows the average level of the daily change in the log of confirmed cases of Covid-19 in days after implementing a stay-at-home order with 
95% confidence bars. The reference category is the first day of the stay at home order. The levels (dots) are the coefficients from OLS regressions where 
the dependent variable is the logarithm of confirmed cases. Regressions include state fixed effects, event time trend and quadratic effect and calendar day 
dummies. Event time is counted in days since the first case of Covid-19 within a state. Standard errors are clustered at the state level.
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Figure 3 Cumulative Cases of Covid-19 and Stay-at-Home Orders   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Notes: Figures plot cumulative cases of Covid-19 for five groups of states. Group 1 -4 implemented stay-at-home orders in successive weeks. Group 0 did not initiate stay-
at-home within the sample. Data are plotted on a logarithmic scale. Vertical line denotes the end of the week in which all states in the group implemented stay-at-home. 
Dotted trend line is the average rate of growth of conformed cases prior to week ending 3/21. Solid line is the trend growth rate prior to implementation of own-group 
policies.   

Group 1

Group 2

Group 3
Group 4

Trend growth 15.24%

Trend growth, pre-group 1, 27%

10
0

10
00

10
00

0
C

um
ul

at
iv

e 
ca

se
s

1 6 11 16 21 26
Days since 100th Case

Group 0: No Stay-at-Home as of 14 Apr 2020

Group 1

Group 2

Group 3Group 4
Pre-policy growth 28.32%

10
0

10
00

10
00

0
10

00
00

C
um

ul
at

iv
e 

ca
se

s

1 6 11 16 21 26 31 36
Days since 100th Case

Group 1: Stay-at-Home Week Ending 3/21/20

Group 1

Group 2
Group 3

Group 4Pre-policy growth 33.6%

Trend growth, pre-group 1, 38%

10
0

10
00

10
00

0
10

00
00

10
00

00
0

C
um

ul
at

iv
e 

ca
se

s

1 6 11 16 21 26 31 36
Days since 100th Case

Group 2: Stay-at-Home Week Ending 3/28/20

Group 1

Group 2
Group 3

Group 4
Pre-policy growth 28.35%

Trend growth, pre-group 1, 40%

10
0

10
00

10
00

0
10

00
00

10
00

00
0

C
um

ul
at

iv
e 

ca
se

s

1 6 11 16 21 26 31 36
Days since 100th Case

Group 3: Stay-at-Home Week Ending 4/4/20

Group 1

Group 2

Group 3
Group 4

Pre-policy growth 20.16%

Trend growth, pre-group 1, 34.6%

10
0

10
00

10
00

0
10

00
00

C
um

ul
at

iv
e 

ca
se

s

1 6 11 16 21 26
Days since 100th Case

Group 4: Stay-at-Home Week Ending 4/11/20

103
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 8

5-
10

6



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 
 

Figure 4 Impact on Initial Jobless claims of Stay-at-Home Orders by State 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Chart shows the average level of the log of initial jobless claims after implementing a stay-at-home order with 95% confidence bars. Data is a 
panel of states + District of Columbia by week. All models include state fixed effects and calendar week fixed effects. The regression is weighted by state 
population. Standard errors are clustered at the state level. 
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We quantify the exposure of major financial markets to news shocks 
about global contagion risk accounting for local epidemic conditions. 
For a wide cross section of countries, we construct a novel data set 
comprising (i) announcements related to COVID-19, and (ii) high-
frequency data on epidemic news diffused through Twitter. Across 
several classes of financial assets, we provide novel empirical evidence 
about financial dynamics (i) around epidemic announcements, (ii) 
at a daily frequency, and (iii) at an intra-daily frequency. Formal 
estimations based on both contagion data and social media activity 
about COVID-19 confirm that the market price of contagion risk is 
very significant. We conclude that prudential policies aimed at 
mitigating either global contagion or local diffusion may be extremely 
valuable.
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1 Introduction

COVID19 has manifested itself as a very aggressive and fast epidemic that�at the time of the

�rst draft of this paper�has brought major economic countries to their knees.1 Given the fast-

increasing contagion curve of COVID19 and its global scale, this epidemic event is challenging

common economic policy interventions and depressing the global value of our assets, i.e., the wealth

of millions of households all over the world.

Given that severe virus-related crises are expected to become more frequent, we �nd it relevant

to use COVID19-related data to ask the following broad questions about �nancial market reactions

to viral contagion risk. First, what is the average impact of medical announcements on �nancial

returns? Equivalently, is the di�usion of this information wealth-enhancing or adding risk? Second,

what is the market price of risk of news related to global contagion dynamics? Third, can local

contagion conditions help us to predict expected returns?

Last but not least, can we use social media activity to measure production and di�usion of

information about epidemic risk? This question is important for at least two reasons. First, fast

epidemic outbreaks tend to get investors o� guard and hence real-time indexes based on social media

news may function as a useful predictive tool. Second, the estimation of multidimensional models

requires many observations that we may gather by using high-frequency data, as opposed to waiting

for daily medical bulletins.

In this study, we address these questions by quantifying the exposure of major �nancial markets

to news shocks about global contagion risk accounting for local epidemic conditions. For a wide

cross section of countries, we construct a novel data set comprising (i) medical announcements

related to COVID19; and (ii) high-frequency data on epidemic news di�used through Twitter.

Across several classes of �nancial assets and currencies, we provide novel empirical evidence about

�nancial dynamics (i) around epidemic announcements, (ii) at a daily frequency, and (iii) at an

1Our �rst draft is dated 3/23/2020. To assess the severity of COVID19, see the
3/11/2020 WHO Director-General's opening remarks (https://www.who.int/dg/speeches/detail/
who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020).
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intra-daily frequency. Formal estimations based on both contagion data and social media activity

about COVID19 con�rm that the market price of epidemic risk is very signi�cant. We conclude that

prudential policies aimed at mitigating either global contagion or local di�usion may be extremely

valuable.

Current results in detail. An important contribution of our work is the collection of a novel

dataset on the COVID19 pandemic that includes both (i) a very large set of o�cial announcements

on medical conditions, and (ii) news di�used on Twitter in real-time by major newspapers. We

identify major newspapers for a large cross section of major countries in the spirit of Baker et al.

(2016). In contrast to Baker et al. (2016), we do not analyze articles, rather we track news published

on Twitter in real time, so that we can produce high frequency data when needed.

More speci�cally, we track tweets posted by major newspapers with key words such as `coro-

navirus' and `covid19'. For each newspaper, we identify the location of its headquarters so that

we can identify its speci�c time-zone. As a result, we gather thousands of tweets for a large cross

section of countries that we can aggregate at di�erent frequencies and across regions.

Given this data set, we document several important facts about news di�usion. First, both

Twitter-based news di�usion (measured by number of tweets) and attention (measured by number

of retweets) spike upon contagion-related announcements. Second and more broadly, the di�usion of

information increases substantially in each country in our data set as soon as that country goes into

an epidemic state.2 Third, our measured increase in information di�usion is particularly pronounced

precisely during the hours in which �nancial markets are open. All of these empirical facts suggest

that tracking Twitter-di�used news can be a reliable way to characterize the information set of

investors at high frequency.

Turning our attention to �nancial dynamics, we look at equity returns around announcements,

that is, in a ±90 minute window. We �nd that cumulative equity returns have no clear pattern

2We identify the beginning of the epidemic state with the day in which the number of con�rmed COVID19
cases becomes greater or equal to 100.
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before the announcement, as they tend to be relatively �at and indistinguishable from zero. In the

post-announcement time window, instead, cumulated returns jump upward upon the announcement

and then they exhibit a signi�cant downward path for about 60 minutes.

We note that this time behavior of returns is not present in the pre-epidemic state and is quite

di�erent from that documented in Lucca and Moench (2015). Lucca and Moench (2015) shows a

slow and persistent accumulation of positive returns before monetary policy announcements. In our

case, instead, the increase in the cumulative returns at the announcement is consistent with the Ai

and Bansal (2018) model. When the representative investor cares about the timing of resolution of

uncertainty, prices jump upward when uncertainty is resolved along the information cycle and then

they start to decline.

Furthermore, we conduct the same analysis looking at the government bond market. The re-

sponse of bonds is less severe than that observed in equities. In a ±60-minute window around the

announcement, there is no signi�cant adjustment in bonds returns. This observation is important

as, by no-arbitrage, it suggests that cash-�ow uncertainty is an important determinant of the market

�uctuations observed during the COVID19 crisis. This high-frequency result is consistent with the

results documented by Gormsen and Koijen (2020) looking at dividend futures.

In the last step of our analysis we focus on European countries whose markets are open simul-

taneously. Speci�cally, we focus on ITA, ESP, UK, FRA, DEU, CHE, and SWE. Every day, we

group them into three portfolios according to their relative number of COVID19 cases. The H (L)

portfolio comprises the equity returns of the top-2 (bottom-2) countries for COVID19 contagion

cases.

We then estimate a no-arbitrage based model in which we allow for time-varying betas with

respect to global contagion risk. Speci�cally we allow equity returns to respond to global viral

contagion news according to the relative share of o�cial COVID19 cases associated to each portfolio.

Global contagion risk is measured either by innovations in the growth rate of global COVID19

contagion cases or by innovations in the tone of our COVID19-related tweets.
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This model can potentially capture many of the features of equity returns that we document

in our descriptive analysis. First, this model captures predictability through contagion-based time-

varying betas. Second, this speci�cation has the potential to capture higher negative skewness for

countries that go through more severe contagion paths. Consider the case of portfolio H comprising

countries receiving a sequence of relatively more severe contagion news. This portfolio will have

greater exposure to adverse news as the relative contagion share of the portfolio grows. As the

relative contagion share starts to �atten out and eventually decline, the sensitivity of this portfolio

to good news is reduced (|βH,t| shrinks), meaning that returns will be less sensitive to positive news

and hence the right tail of their distribution will not be very long.

Third, this model accounts for heterogeneous exposure to global contagion news and hence it

enables us to identify the market price of risk of this global contagion component. Across all of our

speci�cations, the market price of contagion risk is both statistically signi�cant and extremely high.

Related literature. Due to its relevance, the COVID19 crisis has spurred a lot of contempo-

raneous research. Macroeconomic studies are focusing on both the aggregate and distributional

dynamic implications of the epidemic crisis (Eichenbaum et al. 2020; Fornaro and Wolf 2020; Chiou

and Tucker 2020; Barrot et al. 2020; Alon et al. 2020; Glover et al. 2020; Corsetti et al. 2020;

Caballero and Simsek 2020; Coven and Gupta 2020). Other studies assess policy concerns (Alvarez

et al. 2020; Jones et al. 2020; Bahaj and Reis 2020; Elgin et al. 2020; Faria-e Castro and Louis

2020; Krueger et al. 2020; Farboodi et al. 2020). Correia et al. (2020) and Barro et al. (2020)

provide evidence using data from the 1918-Flu epidemic. We di�er from these studies for our strong

attention to asset prices and COVID19-driven risk.

Other studies at the intersection of macroeconomics and econometrics focus on forecasting the

di�usion of both contagion cases and COVID19-implied economic activity disruptions (Favero 2020;

Atkeson 2020; Atkeson 2020; Ma et al. 2020; Ludvigson et al. 2020). We focus on both the cross

sectional and time series implications for asset prices across di�erent asset classes.
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An important strand of the literature focuses on the measurement of both COVID19-induced

uncertainty and �rm-level risk exposure by utilizing textual analysis and surveys (Baker et al. 2020;

Hassan et al. 2020; Bartik et al. 2020). Giglio et al. (2020) use a survey to study investor expectations

over di�erent horizons. Lewis et al. (2020) provide a novel weekly measure of economic activity

using several labor market-based timeseries. We focus on high-frequency data, Twitter-based news

di�usion, epidemic announcements, and country-level asset price dynamics.

Gerding et al. (2020) look at equity market dynamics and link the epidemic risk exposure to

country-level �scal capacity. Albuquerque et al. (2020) focus on the performance of �rms with high

environmental and social ratings during the COVID19 outbreak. They do not study announce-

ments and they do not assess the market price of viral contagion risk. Ramelli and Wagner (2020)

study equity returns across �rms accounting for international trade, �nancial strength, and investor

attention. They use both Google search volume and conference calls as a measure of attention,

whereas we use high-frequency data on retweets of tweets issued by news provider. We provide

novel evidence about both (i) market reactions around contagion-related announcement times, and

(ii) the market price of contagion risk at high frequency.

Schoenfeld (2020) examines buy-and-hold returns for many assets and �nds that managers sys-

tematically underestimate their exposure to COVID19. Alfaro et al. (2020) focus on the link between

aggregate equity market returns and unanticipated changes in predicted infections during the SARS

and COVID19 pandemics. We di�er in our attention to medical announcements; our social media-

based measures of information di�usion and attention; and our high frequency analysis. Our work

complements the evidence in Gormsen and Koijen (2020) who extract relevant information about

expectations and risk premia from dividend futures.
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2 Data

Twitter-based news. In the spirit of Baker et al. (2016), we identify major newspapers for a

large cross section of major countries (see table A.1 in the appendix). In contrast to Baker et al.

(2016), we do not analyze articles, rather we track news published on Twitter in real time, so that

we can produce high frequency data when needed. More speci�cally, we track the news related to

the COVID19 viral infection posted by major newspapers on Twitter. We do so by searching for

key words such as `coronavirus' and `covid19'. For each newspaper, we identify the location of its

headquarter so that we can identify its speci�c time-zone.

In table 1, we report a summary of our social media�based dataset. It is very comprehensive and

it features several dimensions that enable us to study both information production and di�usion.

Speci�cally, our ability to track retweets and likes gives us a high-frequency measure of attention.

Google searches are often used to measure attention (Da et al. 2011; Ramelli and Wagner 2020),

but to the best of our knowledge they are not provided minute-by-minute and they do not account

for the timing of initial production of the news, an aspect that is very important when analyzing

capital market reactions.

The time series behavior of our news indicators is depicted in �gure 1. For each country, we also

depict the beginning of the epidemic period which we identify on the day in which the number of

con�rmed cases of COVID19 becomes greater than 100. We note several interesting patterns. First

of all, there is signi�cant heterogeneity across countries in the timing of the information di�usion.

Across several countries, information di�usion becomes more intense after the beginning of the

local epidemic period. We note that both the di�usion of news, that is, number of tweets, and the

attention to the news, that is, number of retweets, increase rapidly after the beginning of the local

epidemic period.

Figure 2 shows both di�usion and attention to the news at the global level, that is, when we

aggregate all of our tweets and retweets across countries. The right panel of this �gure provides
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Table 1. Newspapers Dataset

Country No. News Tweets Retweets Likes Topics
Providers Mortality Symptoms Quarant. Med. Supply

Australia 4 3307 34318 66187 29% 9% 40% 22%
Canada 5 10271 88295 177900 23% 10% 26% 41%
China 3 13943 660194 1770485 27% 8% 27% 38%
France 4 15717 678873 1127045 41% 4% 36% 20%
Germany 4 3264 64197 122710 19% 18% 34% 28%
Hong Kong 3 8059 280160 394609 16% 5% 46% 33%
India 4 25250 321797 1728467 28% 5% 47% 20%
Italy 3 13145 154141 429069 54% 7% 21% 18%
Japan 4 4227 57999 78475 21% 9% 30% 40%
Korea 4 4198 42859 58386 30% 6% 24% 41%
New Zealand 4 5657 59774 114832 33% 8% 39% 20%
Spain 4 13173 1190005 1847935 46% 19% 13% 22%
Switzerland 4 2313 21237 26376 33% 8% 37% 24%
UK 4 7412 386741 854359 23% 14% 41% 22%
USA 11 28505 2477861 5104485 26% 15% 20% 39%

Total 65 158441 6518451 13901320

Notes: This table shows summary statistics of COVID19-related news data that we collect for a
large cross section of countries. Our real-time data range from January 1st 2020 to the date of this
manuscript. For each country, we report number of news providers and number of tweets collected.
We also report the total number of retweets and likes as measures of attention. The last four
columns report the share of tweets mentioning number of deaths, symptoms, quarantine measures,
and medical supply, respectively.

a breakdown of the most prominent topics addressed in the COVID19 tweets, namely, symptoms,

death risk, quarantine measures, and availability of medical supply. The attention to all of them

increased substantially, except for the number of tweets devoted to the discussion of the symptoms

of COVID19 which has increased only slightly.

Figure 3 shows the intraday pattern of the di�usion of COVID19 news for each country. This

�gure is not based on universal time, rather it accounts for country-speci�c time. In each country,

we consider two country-speci�c subsamples, that is, the pre-epidemic and epidemic period. There

are two main takeaways from this picture: (i) the di�usion of COVID19-related news increases

signi�cantly with local epidemic conditions; (ii) a signi�cant share of the di�usion takes place while

the local capital markets are open. This observation is important because it suggests that monitoring

media activity can be a very useful tool to track in real-time the information set of �nancial market

participants.
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Fig. 1. Information Diffusion and Attention across Countries

Notes: This �gure shows the daily number of tweets posted in each country by major newspapers. The
vertical axis shows the daily number of tweets. The size of each data point represents the number of retweets
scaled by the maximum daily number of retweets for each country. The sample starts on January 8th 2020
and ends on the date of this draft. The vertical line depicts the date that each country had more than 100
con�rmed cases of COVID19. More details on the data collection are reported in the Appendix.

Tweet Tone. Since we use Twitter activity to form a high-frequency risk factor, we need to

identify the tone of the tweets, that is, we need to know whether they relate to either good or bad

news. Given (i) the high volume of tweets that we collect, and (ii) the fact that our tweets are written

in di�erent languages, we use Polyglot (available at https://pypi.org/project/polyglot/), i.e.,

a natural language pipeline that supports multilingual applications with polarity lexicons for 136

languages. This computer-based mapping algorithm reads our text and classi�es the words into

three degrees of polarity: +1 for positive words, -1 for negatives words and 0 for neutral words. We

provide two examples in table A.2 (see our appendix).

Our measure of the tone of the tweets is based on the count of positive words minus the count of

negative words, divided by the sum of positive and negative word counts (Twedt and Rees, 2012).
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Fig. 2. Global Information Diffusion

Notes: The left panel of this �gure shows the daily total number of tweets posted across countries by major
newspapers. The vertical axis shows the daily number of tweets. The size of each data point represents
the number of retweets scaled by the maximum daily number of retweets. The right panel shows the daily
number of tweets related to death-risk, (scarcity of) medical supplies, quarantine, and symptoms. The tweets
were identi�ed using a multilingual bag-of-words approach. The sample starts on January 8th 2020 and ends
on the date of this draft. More details on the data collection are reported in the Appendix.

We compute this measure at the country level at both the hourly and the daily frequency. We then

aggregate this measure across countries in order to obtain a global measure.

We depict our global tone factor in �gure 4, left panel. Its time-pattern is consistent with the

observed contagion dynamics. Speci�cally, the tone became very negative by the end of January as

the conditions in China started to precipitate. It improved in early February, when there was still

no sign of massive contagion in Europe, and it declined again when the epidemic started in Italy.

The slow improvement of the tone of our tweets observed after the beginning of March pairs well

with the observed �attening of the contagion curves in many of the countries in our dataset. We

�nd these results reassuring as they con�rm that our text analysis algorithm tracks the contagion

dynamics in a reliable manner.
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Fig. 3. Intraday Information Diffusion

Notes: This �gure shows the intra-day trend of the number of tweets posted every 30 minutes across several
countries in our dataset. The dotted line represents the intra-day trend in the epidemic period, identi�ed
when a country has more than 100 cases of COVID19. The dashed line represents the intra-day trend in the
pre-epidemic period. The sample starts on January 8th 2020 and ends on the date of this draft. Time refers
to local time zone of each newspaper. More details on the data collection are reported in the Appendix.

For the sake of our asset pricing analysis, we focus on the innovations to the tone of our tweets.

One simple way to extract these innovations is to consider the di�erence in the tone at day t and

its 5-day backward looking moving average assessed at time t − 1. We depict this time series in

the right panel of �gure 4 and note that (i) it has become progressively less volatile; and (ii) it is

basically serially uncorrelated.
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Fig. 4. Twitter-Based COVID19 Factor
Notes: This �gure shows our daily global Twitter-based COVID19 factor. We use Polygot to measure the
polarity of our tweets and compute the tone of each tweet according to Twedt and Rees (2012). We aggregate
the tones at a daily frequency and across countries. MA refers to a backward looking 5-day moving average.
The news at time t is computed as the di�erence between the tweets-tone at time t and their MA at time
t− 1. The sample starts in early January 2020 and ends on the date of this draft.

Contagion data. Contagion data are from o�cial medical bulletins. Our primary source is

CSSE at Johns Hopkins University.3 Since we are interested in the timing of the announcements,

we complement this information with hand-collected o�cial press statements publicly available on

the webpage of the Ministry of Health (or, equivalently, Health Department) of each country in our

data set. When the time stamp of the announcement is not reported on the o�cial report, for each

country we investigate the twitter accounts of both the Ministry of Health and major newspapers

releasing news with the content of the reports. Hence in our data collection we select the e�ective

date and time of release of the news.

3https://github.com/CSSEGISandData/COVID19/tree/master/csse_covid_19_data/csse_covid_

19_time_series
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Table 2. Summary Statistics for Announcements

Country No. Announcements Governments & Med. Bulletins
Central Banks & Lockdowns

Australia 117 0.00% 100.00%
Canada 52 0.00% 100.00%
China 107 0.00% 100.00%
France 89 7.87% 92.13%
Germany 41 17.07% 82.93%
Hong Kong 87 0.00% 100.00%
India 68 5.88% 94.12%
Italy 96 22.92% 77.08%
Japan 15 6.67% 93.33%
Korea 156 0.64% 99.36%
New Zealand 63 0.00% 100.00%
Spain 122 5.74% 94.26%
Sweden 34 0.00% 100.00%
Switzerland 90 2.22% 97.78%
UK 128 4.69% 95.31%
USA 106 8.49% 91.51%

Total 1371 4.82% 95.18%

Notes: This table shows summary statistics for COVID19-related announcements that we collect
for a large cross section of countries. Our real-time data range from 1/1/2020 to the date of this
manuscript. For each country, we report the total number of announcements, the fraction related
to either medical bulletins or lock-down measures, as well as the fraction of other announcements
issued by governments and central banks about �scal and monetary policy, respectively.

Announcements. For the sake of our intraday analysis, we treat the release of each medical

bulletin as an announcement. The same applies to travel limitations and lock down policies related

to COVID19. We note that we have manually tracked these policy interventions on a daily basis and

hence we have constructed a novel dataset important to study real-time high frequency reactions of

�nancial markets to epidemic risk.

Since in our sample we have also witnessed important announcements related to both monetary

and �scal policy interventions, we complement the medical announcements with major policy-related

announcements as well. Our data collection is very comprehensive, as documented in table 2. An

example of COVID19-related announcement follows:

2020-03-14 15:35:00; Vice President @Mike_Pence and members of the
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Coronavirus Task Force will hold a press brie�ng at 12:00 p.m. ET. Watch

LIVE: http://45.wh.gov/RtVRmD

In this case, we set the time of the announcement at 12:00 p.m. ET. To clarify further our method-

ology, we also give an example of an announcement related to a monetary policy intervention in

response to COVID19:

2020-03-18 23:05:00; FT Breaking News; ECB to launch e750bn bond-

buying programme.

In this case, the time of the announcement is 11:05p.m. CET.

Sometimes, we may have two consecutive related announcements in the same country (for ex-

ample, an o�cial medical bulletin released by the Health Department immediately followed by a

press conference of the Prime Minister). To avoid redundant information, we only consider an-

nouncements non-overlapping over a 60 minute window. In table 2, we report our e�ective number

of announcements that we use for each country.

Most importantly, we show that the vast majority of the announcements that we gather are

solely related to medical bulletins and policy measures to �ght the epidemic. This is an important

point, as the returns reaction in our study is di�erent from that observed with respect to other

economic announcements.

Financial Data. All data are from Eikon, Thomson Reuter. Equity and currency data are

obtained at the minute frequency and then aggregated at lower frequency when necessary. We

measure the risk-free rate by focusing on the yield of 3-month government bills. We also focus on

treasury bonds with a 10-year maturity. All details about our data can be found in table A.3 (see

appendix).

In order to show the relevance of local epidemic conditions, in �gure 5 we show the intra-day

behavior of returns pre- and post-epidemic for equities, bonds, and currencies. We focus on two

groups of countries with similar stock exchange timing, namely US and Canada (EST timezone),
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Equity Bonds

Currencies

Fig. 5. Intra-day Returns Behavior and Epidemic Conditions

Notes: For each asset class, we depict per- and post-pandemic intra-day return patterns. Data are averaged across days. In each country, the
epidemic period starts when there are more than 100 cases of COVID19. The sample starts in October 2019 and it ends on the date of this
draft. Bond and stock hourly returns start one hour after the opening of the markets. All returns are in raw units. Sentence deleted
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and Italy, UK, and Germany (CET timezone). The countries in the second group are interesting

because they have experienced very di�erent exposures to COVID19. Italy has been a�ected �rst

and in an intensive way. Germany has been able to mitigate the contagion and has seen a pick up in

contagion numbers as soon as it lessened the lockdown measures. The UK has changed its strategic

response to the crisis in the middle of the epidemic period.

We note that equity returns have been much more volatile in the epidemic period. Most impor-

tunately, the intra-day patterns have become much more correlated once all countries have gone

into an epidemic state. This result suggests that we can think of the epidemic as a slowly di�using

global factor. Our empirical asset pricing analysis is based on this observation.

When we turn our attention to bonds in the epidemic period, we see more volatile patterns

than in the pre-epidemic period. In contrast to equities, we see no substantial change in their

commonalities across countries. Currencies, instead, tend to be more volatile and more correlated

in epidemic subsamples, similarly to equities. We see this as consistent with COVID19 being a

global risk factor that a�ects countries at di�erent times and with di�erent intensities.

3 Empirical Findings

In this section, we report our major empirical �ndings. We �rst look at the behavior of asset prices

around announcement time. We then turn our attention to the study of a conditional linear factor

model which accounts for heterogeneous exposure to COVID19. The latter approach produces

interesting results both when we use daily medical bulletins and when we use higher frequency data

based on our social media measures. The last subsection highlights our next research steps.
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3.1 Announcements

Our novel social media-based data set enables us to measure the di�usion of information at a very

high frequency. For each announcement in our data set, we collect all tweets issued in a ±90-minute

window around announcement time. For the sake of statistical power, we aggregate all of these

tweets across all of our countries and we call the resulting aggregate `World'.

In the left panel of �gure 6, we show per-country per-minute average number of tweets around

announcement time during epidemic periods in excess of the same average measured in the pre-

epidemic samples (dots). As before, the start of the epidemic period is country-speci�c and is

identi�ed with the day when the number of COVID19 cases becomes greater than 100. This proce-

dure enables us to capture news di�usion patterns speci�c to the epidemic period. The right panel

refers to retweets, that is, our measure of attention to the news.

We interpolate our data with a quadratic function of time and include dummy variables to

account for post-announcement jumps in both the level and the slope. Formal tests reject the null

of a common time-behavior before and after the announcement for information di�usion. We depict

our results in �gure 6, where the solid line denotes our estimate whereas the shaded area refers to

our con�dence intervals. Importantly, both information di�usion and attention to the news increase

signi�cantly in the aftermath of the announcements.

Note that we assign to retweets the time of the original tweet they refer to. This means that we

match attention level with the original time of the news di�usion. As a result, the lack of a jump

in attention is likely due an underestimation issue with respect to the timing of the retweets since

many retweets refer to pre-announcement tweets but happen post-announcement.

This pattern pairs nicely with that of equity returns depicted in �gure 7. Speci�cally, the panel

on the left shows the average cumulative returns obtained from buying country-speci�c equities 90

minutes before a country-speci�c announcement and holding them over an increasing horizon of 180

123
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 1

07
-1

42



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Fig. 6. Information Diffusion and Attention around Announcements

Notes: The left (right) panel of this �gure shows the average per-minute and per-country number of tweets
(retweets) around announcement time in excess of the same average in the pre-epidemic period. In each
country, the epidemic period starts when there are more than 100 cases of COVID19. The solid line comes
from a quadratic interpolation estimated before and after the announcement. Shaded areas refer to HAC-
adjusted con�dence intervals. The sample starts on January 8th 2020 and ends on the date of this draft.

minutes. Our results are averaged across both countries and announcements.4

In this picture, we plot the behavior of the returns in both the normal and the epidemic states

or, equivalently, subsamples. In both cases, cumulative returns have no clear pattern before the

announcement, as they tend to be relatively �at and indistinguishable from zero. In the post-

announcement time window, instead, the dynamics become quite di�erent across the normal and

the epidemic state. Speci�cally, in the epidemic state, cumulated returns jump upward upon the

announcement and then they exhibit a signi�cant downward path for about 60 minutes.

We note that this �gure shows a time varying behavior of returns quite di�erent from that

documented in Lucca and Moench (2015). Lucca and Moench (2015) show a slow and persistent

accumulation of positive returns before monetary policy announcements. In our case, instead, the

4If a country-speci�c announcement happens when the exchange of the country is closed, we consider the
90 minutes prior to the closing time of the previous day and the �rst 90 minutes after the opening of the
exchange in the next day. This is, for example, what we do with the ECB announcement made at 11:05pm
on 3/18/2020.
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Cumulative Returns Hourly Returns

Fig. 7. Equity Returns around Announcements

Notes: The panel on the left shows the average cumulative returns obtained from buying equities 90 minutes
before an announcement and holding them over an increasing horizon of 180 minutes. The panel on the
right shows the average realized returns from holding equities for 60 minutes at the end of the investment
strategy, that is, the value reported at +30 minutes refers to an investment started 30 minutes before the
announcement. Returns are in raw log units. In each country, the epidemic period starts when there are more
than 100 cases of COVID19. The solid line comes from a quadratic OLS augmented with post-announcement
dummies. Shaded areas refer to HAC-adjusted con�dence intervals. The sample starts on January 8th 2020
and ends on the date of this draft.

increase in the cumulative returns at the announcement is consistent with the Ai and Bansal (2018)

model. When the representative investor cares about the timing of resolution of uncertainty, prices

jump upward when uncertainty is resolved along the information cycle, and then they start to

decline.

After about 60 minutes returns start to pick up again. There are two possible explanations at

the moment. First, since we consider non-overlapping announcements over a 60-minute window

when forming our dataset, we may start to pick the componded e�ect of multiple announcements.

Alternatively, such under-shooting and recovery behavior could be consistent with behavioral �nance

models. A possible way to test the second exaplanation is to look at volumes and liquidity around

announcement time. We are currently working on this issue.
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To further validate this point, in the right panel we plot hourly returns computed on a backward

looking rolling window. For example, a data point reported at the time of the announcement refers

to the returns from an investment strategy started 60 minutes before the announcement time and

liquidated at the announcement time. Given this construction, we can also think of these values as

a measure of 60-minute ahead expected returns.

Our results indicate that there is no signi�cant pattern in the pre-epidemic period. Most im-

portantly, in the epidemic subsample, expected returns are stable up to an hour prior to the an-

nouncement, they jump upward when the hour ahead includes the announcement time, and then

they decline and start to revert half an hour prior to the announcement. In our graph, this means

to look at at t = +30 minutes from announcement.

Figure A.3 (see Appendix) shows the di�erence in cumulative returns and hourly returns across

normal and epidemic subsamples. Formal tests con�rm substantial di�erences in the time behavior

of returns pre- and post-announcement across the normal and the epidemic samples, consistent with

our discussion of �gure 7.

Figure 8 shows our results for bonds returns. The construction of the depicted data is identical

to that used for equities. We note that the dynamics in the bond markets are less severe than those

observed from equities. In a ±60-minute window around the announcement, there is no signi�cant

adjustment in bonds returns. This observation is important as, by no-arbitrage, it suggests that

cash-�ow uncertainty is an important determinant of the market �uctuations observed during the

COVID19 crisis. This high-frequency result is consistent with the results documented by Gormsen

and Koijen (2020) looking at dividend futures.

An alternative explanation for this muted response is that bond markets are subject to two

o�setting forces. Speci�cally, �ight to safety may promote bond appreciation but, simultaneously,

sovereign default risk may increase and and push bond prices downward. We are working on

this issue by collecting country-level data on both trade volume and CDS spreads. Given that

di�erent countries entered this crisis with di�erent levels of �scal capacity, exploring country-level
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Cumulative Returns Hourly Returns

Fig. 8. Bond Returns around Announcements

Notes: The panel on the left shows the average cumulative returns obtained from buying 10y government
bonds 90 minutes before an announcement and holding them over an increasing horizon of 180 minutes. The
panel on the right shows the average realized returns from holding bonds for 60 minutes at the end of the
investment strategy, that is, the value reported at +30 minutes refers to an investment started 30 minutes
before the announcement. Returns are in raw log units. In each country, the epidemic period starts when
there are more than 100 cases of COVID19. The solid line comes from a quadratic OLS augmented with
post-announcement dummies. Shaded areas refer to HAC-adjusted con�dence intervals. The sample starts
on January 8th 2020 and ends on the date of this draft.

heterogeneity is important.

3.2 Cross Sectional Results: HMLCOV ID19

Daily News. We start by focusing on European countries whose markets are open simultane-

ously. Speci�cally, we focus on ITA, ESP, UK, FRA, DEU, CHE, and SWE. Every day, we group

them into three portfolios according to their relative number of COVID19 cases. The H (L) port-

folio comprises the top-2 (bottom-2) countries in terms of COVID19 cases. We also consider an

investment strategy long in the H portfolio and short in the L portfolio. We refer to the returns of

this portfolio as HML-COVID19.

We report common summary statistics for these portfolios in table 3. The in-sample average
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Table 3. Summary Statistics for Portfolios

Low Medium High HMLCOV ID19

Mean −0.026 −0.028 −0.062 −0.036∗∗
(0.041) (0.038) (0.045) (0.016)

StDev 0.912 0.843 0.942 0.472
First Quartile -0.271 -0.312 -0.328 -0.181
Median -0.004 -0.005 -0.023 -0.009
Third Quartile 0.263 0.268 0.246 0.14
Avg. N. Countries 2.088 2.923 1.989 -
Turnover (%) 2 5.2 4.1 -
International-CAPM α 0.012 0.007 −0.024∗∗ −0.036∗∗

(0.009) (0.006) (0.009) (0.015)

Notes: This table shows summary statistics for the equity excess returns of portfolios formed
on a daily basis according to the relative share of country-speci�c COVID19 cases measured the
day before formation. Hourly excess returns are in log units and multiplied by 100. Portfolios
are obtained from equity indexes for ITA, ESP, UK, FRA, DEU, CHE, and SWE. Our real-time
data range from February 2020 to the date of this manuscript. Turnover measures the number
of countries entering or exiting a portfolio relative to the total number of countries in a speci�c
portfolio × number of days in our sample. International-CAPM α is the intercept obtained by
regressing the portfolio returns on the average equity return across the above mentioned countries.
Numbers in parenthesis are HAC-adjusted standard errors.

of the returns in all portfolios is negative. Given our sample, this not surprising. Focusing on the

quartiles of the returns distribution, we see that the portfolio comprising the more exposed countries

tends to have more severe negative skewness. This is an aspect that we capture in our conditional

no-arbitrage model.

The turnover in each portfolio is not excessive and, most importantly, our HML-COVID19 returns

are not explained by an international CAPM model. Speci�cally, when we regress our HML returns

on the excess returns of an equity index including all of our countries, the alpha estimated from the

timeseries is statistically signi�cant.
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We consider the following conditional asset pricing model,

rexf,t+1 = rexf,t + βf,t · newsglobt+1 , f ∈ {H,M,L}, (1)

βf,t = β0 + βf,1Xf,t, (2)

∂rexf,t
∂Xf,t

= λβf,1, (3)

where Xt is the share of contagion cases associated to portfolio f at time t, and λ is the market

price of risk of the global news factor newsglobt+1 .

This model can potentially capture many of the features of returns seen so far. First, it captures

predictability through contagion-based time-varying betas. Second, it has the potential to capture

higher negative skewness for countries that go through more severe contagion paths. Consider

the case of portfolio H comprising countries receiving a sequence of relatively more severe adverse

contagion news. This portfolio will have severe exposure to adverse news as the relative contagion

share of the portfolio grows. When the relative contagion share starts to �atten out and decline, the

sensitivity of this portfolio to good news is reduced (|βH,t| shrinks). This means that returns become

less sensitive to positive news and hence the right tail of the returns distribution is shortened.

Third, consistent with our previous descriptive returns, it accounts for heterogenous exposure

to global contagion news. Last but not least, it enables us to identify the market price of risk of

this global contagion component, λ. By no-arbitrage, the extent of time-series predictability of our

excess returns must equal λβf,1, and βf,1 can be easily estimated in the time-series by considering

the multiplicative factor Xf,t · newsglobt+1 .

We report our main results obtained from daily data in table 4. In the �rst two speci�cations,

the news to the contagion factor are obtained by computing the di�erence between the daily growth

rate of contagion cases at time t and its backward-looking time t−1 moving average computed over

the previous 5 days. We choose a 5-day window because it matches the number of days of a typical

trading week.
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Table 4. Conditional Linear Factor Model

β0 βL,1 βM,1 βH,1 MPR N.Obs N. Assets

News about Covid Cases
coef −0.049 −51.489∗∗∗ −13.400∗∗∗ −7.233∗∗∗ −0.012∗∗∗ 61 3
se (0.034) (11.985) (3.663) (1.690) (0.003) 61 3
News about Covid Cases, adjusting for FX
coef −0.044 −48.681∗∗∗ −11.222∗∗∗ −5.582∗∗∗ −0.012∗∗∗ 61 3
se (0.028) (10.881) (3.016) (1.264) (0.004) 61 3
News from Twitter
coef 0.129∗∗ 17.219∗∗∗ 4.864∗∗∗ 2.001∗∗∗ 0.037∗∗∗ 61 3
se (0.050) (4.669) (1.133) (0.500) (0.009) 61 3
News from Twitter, adjusting for FX
coef 0.091∗∗ 25.736∗∗∗ 6.527∗∗∗ 2.236∗∗∗ 0.029∗∗∗ 61 3
se (0.037) (6.016) (1.116) (0.512) (0.006) 61 3

Notes: This table shows the results of the conditional linear factor model described in equations
(1)�(3). Portfolios are formed on a daily basis according to the relative share of country-speci�c
COVID19 cases measured the day before formation (Xt). The coe�cient βf,t = β0+βfXf,t refers to
the exposure of the equity portfolio f ∈ {H,M,L} to the COVID19 factor. When we measure the
COVID19 news as unexpected number of contagion cases (unexpected improvement in COVID19-
related tweets), we expect a negative (positive) market price of risk (MPR). Both daily excess
returns and market prices of risk are in log units. Our real-time data range from February 2020
to the date of this manuscript. Estimates and HAC-adjusted standard errors are obtained through
GMM.

Since our contagion-based factor spans a 7-day week, we assign to Friday the average growth

rate of global contagion cases that occurred on Friday, Saturday, and Sunday.5 Note that the set

of countries that we consider provide daily updates about contagion cases at the end of the day. In

order to properly represent the information set of investors, in our asset pricing model we lag the

news by one day, i.e., we assume that day-t returns respond to news released in the evening of day

t− 1.

We estimate our asset pricing model through GMM and notice that all portfolios have a sig-

ni�cant negative exposure to our contagion-based news, βf,t. This sign is consistent with our

expectations since positive news about global contagion growth refers to an adverse shock. Most

importantly, the implied daily market price of risk is negative and signi�cant. This means that the

5For the Easter Holiday, we assign to Thr 4/9/2020 the average daily growth rate of global cases from
Thr 4/9/2020 to Mon 4/13/2020.
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relative share of contagion cases forecasts an increase in expected future returns across all portfolios.

We note that the share of contagion cases across our three portfolios have very di�erent scales and

variability. As a result, the coe�cients βf,1 are not revealing of the sorting of βf,t across portfolios.

In our sample, the portfolio of countries with the highest share of COVID19 cases tends to be more

exposed to contagion news.

Both Sweden and Switzerland have their own local currencies. Given the spirit of our analysis,

it is important to understand whether adjusting for exchange rates our results continue to hold.

When we express all returns in euros, our estimated time-varying betas change slightly, but the

market price of risk remains unchanged.

Next, we replicate our estimation procedure using our daily measure of innovations in the global

factor derived from our tweets' tone. In this case, positive news should be interpreted as good

news. As a result, both our estimated beta and the market price of risk are positive. Equivalently,

the share of contagion cases is a relevant positive predictor of future expected returns. Looking at

theoutput of our four speci�cations and accounting for estimation uncertainty, we conclude that 1%

is a reasonable lower bound on the daily market price of risk of daily contagion news. We consider

this estimate as very signi�cant, consistent with the great contraction experienced in equity markets

during the epidemic period.

An important advantage of our Twitter-based risk-factor is that we can measure it at very high

frequencies, in contrast to daily contagion cases. Using higher frequency data helps sharpen the

estimate of the market price of risk because it provides an increased number of observations and

hence it gives us enough degrees of freedom to control for other relevant factors, i.e, to estimate a

multi-factor conditional model.

In table 5, we show our results when we link hourly equity excess returns to hourly Twitter-based

news. Our implied betas continue to be positive, but our inference is less precise as hourly returns

are much noisier than daily returns. The implied market price of risk is positive, well identi�ed,
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Table 5. Conditional Linear Factor Model

β0 βL,1 βM,1 βH,1 MPR N.Obs N. Assets

News from Twitter, hourly
coef −0.011 1.068 0.606∗∗ 0.201∗ 0.057∗∗∗ 549 3
se (0.008) (1.322) (0.307) (0.118) (0.018) 549 3
News from Twitter, hourly, adjusting for FX
coef 0.003∗ 0.202∗ 0.049∗∗ 0.001 0.280∗∗∗ 549 3
se (0.001) (0.114) (0.023) (0.008) (0.107) 549 3
News from Twitter, hourly, controlling for MKT
coef −0.013∗∗ 1.040 0.699∗∗∗ 0.252∗∗∗ 0.015∗∗∗ 549 3
se (0.005) (0.677) (0.234) (0.094) (0.006) 549 3

Notes: This table shows the results of the conditional linear factor model described in equations
(1)�(3). Portfolios are formed on a daily basis according to the relative share of country-speci�c
COVID19 cases measured the day before formation (Xt). The coe�cient βf,t = β0+βfXf,t refers to
the exposure of the equity portfolio f ∈ {H,M,L} to the COVID19 factor. When we measure the
COVID19 news as unexpected number of contagion cases (unexpected improvement in COVID19-
related tweets), we expect a negative (positive) market price of risk (MPR). Both hourly excess
returns and market prices of risk are in log units. Our real-time data range from February 2020
to the date of this manuscript. Estimates and HAC-adjusted standard errors are obtained through
GMM.

and sizeable. When we express al returns in Euros, the market price of risk becomes enormous. We

interpret this preliminary result as suggesting that our factor may remain very relevant even after

controlling for other relevant sources of risk highlighted in the literature.

In our last speci�cation. Speci�cally, we regress our portfolio returns on the excess returns of an

equity index including all of our countries and use the residuals of this regression in our conditional

one-factor model. Consistent with the failure of the international-CAPM documented in table 3,

our the implied market price of risk is still positive and sizeable.

3.3 Next steps

We are working on addressing the following questions:

1. What happens to the estimate of the market price of contagion risk if we include information

from bond returns?
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2. Is the HMLCOV ID19 factor spanned by currencies? If so, we can use currencies to track this

factor across time zones (UTC time), as currencies are traded all day long.

3. Is the HMLCOV ID19 factor that we can construct from either America or Asia equity markets

similar to the one constructed using European data? If not, why?

4. How would our portfolio results change if we focused on winners and losers in terms of daily

contagion changes, as opposed to the share of the total `stock' of cases?

5. Do di�erent news shocks (mortality, contagion, ...) have a di�erent impact on the MPR of

our COVID19 factor?

6. Given the heterogeneous response of equity and bonds to the same factor, what are the

resulting prescriptions for the construction of a high-performance portfolio?

7. As the contagion risk tapers o� in Europe, will announcements have a di�erent impact on

equity returns?

4 Conclusion

In this study, we quantify the exposure of major �nancial markets to news shocks about global

contagion risk accounting for local epidemic conditions. We construct a novel data set comprising

(i) medical announcements related to COVID19 for a wide cross section of countries; and (ii) high-

frequency data on epidemic news di�used through Twitter. Across several classes of �nancial assets

and currencies, we provide novel empirical evidence about �nancial dynamics (i) around epidemic

announcements, (ii) at a daily frequency, and (iii) at an intra-daily frequency. Formal estimations

based on both contagion data and social media activity about COVID19 con�rm that the market

price of epidemic risk is very signi�cant. In the spirit of Mulligan (2020), we conclude that policies

related to prevention and containment of contagion could be �rst-order, that is, extremely valuable,

for global wealth.
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Appendix A. Data Sources

Table A.1: News Papers

Country Newspaper Twitter Account BBD Language

USA LA Times @latimes Yes English

USA USA Today @USATODAY Yes English

USA Chicago Tribune @chicagotribune Yes English

USA Washington Post @washingtonpost Yes English

USA Boston Globe @BostonGlobe Yes English

USA Wall Street Journal @WSJ Yes English

USA Miami Herald @MiamiHerald Yes English

USA Dallas Morning News @dallasnews Yes English

USA Houston Chronicle @HoustonChron Yes English

USA San Francisco Chronicle @sfchronicle Yes English

USA New York Times @nytimes Yes English

Italy Corriere Della Sera @Corriere Yes Italian

Italy La Repubblica @repubblica Yes Italian

Italy Il Sole 24 ORE @sole24ore Italian

Canada Gazette @mtlgazette Yes English

Canada Globe and Mail @globeandmail Yes English

Canada Ottawa Citizen @OttawaCitizen Yes English

Canada Toronto Star @TorontoStar Yes English

Canada Vancouver Sun @VancouverSun Yes English

China People's Daily, China @PDChina English

China China Xinhua News @XHNews English

China China Daily @ChinaDaily English

( To be continued)
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Country Newspaper Twitter Account BBD Language

France Le Monde @lemondefr Yes French

France Le Figaro @Le_Figaro French

France Liberation @libe French

France Le Parisien @le_Parisien French

Germany Handelsblatt @handelsblatt Yes German

Germany Frankfurter Allgemeine Zeitun @faznet Yes German

Germany BILD @BILD German

Germany Zeit Online @zeitonline German

India Economic Times @EconomicTimes Yes English

India Times of India @timeso�ndia Yes English

India Hindustan Times @htTweets Yes English

India The Hindu @the_hindu Yes English

Japan Asahi Shimbun AJW @AJWasahi Yes English

Japan The Japan News by Yomiuri @The_Japan_News Yes English

Japan The Japan Times @japantimes English

Japan Japan Today News @JapanToday English

Korea Yonhap News Agency @YonhapNews Korean

Korea The Korea Times @koreatimescokr Korean

Korea Korea JoongAng Daily @JoongAngDaily English

Korea The Korea Herald @TheKoreaHerald English

Spain EL MUNDO @elmundoes Yes Spanish

Spain EL PAIS @el_pais Yes Spanish

Spain ABC.es @abc_es Spanish

Spain La Vanguardia @LaVanguardia Spanish

UK The Times @thetimes Yes English

( To be continued)
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Country Newspaper Twitter Account BBD Language

UK Financial Times @FinancialTimes Yes English

UK BBC News (UK) @BBCNews English

UK Guardian news @guardiannews English

Switzerland Neue Zurcher Zeitung @NZZ German

Switzerland 20 Minuten @20min German

Switzerland 24 Heures @24heuresch French

Switzerland Le Temps @LeTemps French

Hong Kong South China Morning Post @SCMPNews Yes English

Hong Kong Hong Kong Free Press @HongKongFP English

Hong Kong RTHK English News @rthk_enews English

Australia The Age @theage English

Australia The Australian @australian English

Australia The Daily Telegraph @dailytelegraph English

Australia Financial Review @FinancialReview English

New Zeland The New Zealand Herald @nzherald English

New Zeland The Sydney Morning Herald @smh English

New Zeland Herald Sun @theheraldsun English

New Zeland Guardian Australia @GuardianAus English

Notes: This table reports our newspaper sources. For each newspaper, we specify headquarter
location, original language, and twitter account. A 'Yes' under the column BBD denotes a newspaper
used also in Baker et al. (2016).
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Table A.2. Computing Tweets' Tone: Two Examples

Tweet Text Positive Words Negative Words Tone

The coronavirus pandemic has been
particularly devastating to the United
States's biggest cities. It comes as
the country's major urban centers were
already losing their appeal for many
Americans.

�devastating�, �losing� �appeal� −2+1
3 = −0.33

A shortage of test kits and technical
�aws in the U.S. signi�cantly delayed
widespread coronavirus testing. This is
how testing has increased since the be-
ginning of March � and how far it still
needs to go, according to the Harvard
estimates

�shortag�, ��aws�, �de-
layed�

−3
3 = −1

Notes: This table shows two examples of the computation of the tone of a tweet using Polyglot.
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Table A.3. Data Sources

Country Equity Index Long Term Bond Index Short Term Bond Index Currency

Australia ASX Index AU 10y benchmark AU 1Y benchmark rate AUDUSD
Canada SPTSX Composite Index CA 10y benchmark CA 3M benchmark rate USDCAD
China Shanghai Shenzen Composite Index CN 10y benchmark CN 1Y benchmark rate USDCNY
France CAC Index FR 10y benchmark FR 3M benchmark rate EURUSD
Germany DAX Index DE 10y benchmark DE 3M benchmark rate EURUSD
Hong Kong Hong Kong Hang Seng Index CN-HK 10y benchmark HK 3M benchmark rate USDHKD
Italy FTSE MIB Index IT 10y benchmark IT 3M benchmark rate EURUSD
India BSE Senex Index IN 10y benchmark ES 3M benchmark rate USDINR
Japan Nikkei 225 Index JA 10y benchmark JP 3M benchmark rate USDJPY
Korea KOSPI Index KR 10y benchmark KR 1Y benchmark rate USDKRW
New Zealand NZX 50 Gross Index NZ 10y benchmark NZ 3M benchmark rate NZDUSD
Spain IBEX 35 ES 10y benchmark ES 3M benchmark rate EURUSD
Switzerland SMI Index CH 10y benchmark CH 3M benchmark rate USDCHF
Sweden OMX Stockholm 30 Index SE 10y benchmark SE 3M benchmark rate USDSEK
USA SPX Index US 10y benchmark US 3M benchmark rate USD
UK FTSE Index UK 10y benchmark GB 3M benchmark rate GBPUSD

Notes: This table shows our data sources. All data are obtained from Eikon, Thomson Reuter.
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Cumulative Returns Hourly Returns

Fig. A.3. Equity Returns around Announcements

Notes: The panel on the left shows the average cumulative returns obtained from buying equities 90 minutes
before an announcement and holding them over an increasing horizon of 180 minutes in the epidemic period
minus that obtained in the pre-epidemic sample. The panel on the right shows the di�erence in the average
realized returns from holding equities for 60 minutes across the pre-epidemic and the epidemic sample. We
report realized returns at the end of the investment strategy, that is, the value reported at +30 minutes
refers to an investment started 30 minutes before the announcement. Returns are in raw log units. In each
country, the epidemic period starts when there are more than 100 cases of COVID-19. The solid line comes
from a quadratic OLS augmented with post-announcement dummies. Shaded areas refer to HAC-adjusted
con�dence intervals. The sample starts on January 8th 2020 and ends on the date of this draft.
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quarantine: Is there a trade-off 
between GDP and public health?
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We construct a quantitative model of an economy hit by an epidemic. 
People differ by age and skill, and choose occupations and whether to 
commute to work or work from home, to maximize their income and 
minimize their fear of infection. Occupations differ by wage, infection 
risk, and the productivity loss when working from home. By setting 
the model parameters to replicate the progression of COVID-19 in 
South Korea and the United Kingdom, we obtain three key results. 
First, government-imposed lock-downs may not present a clear trade-
off between GDP and public health, as commonly believed, even 
though its immediate effect is to reduce GDP and infections by forcing 
people to work from home. A premature lifting of the lock-down 
raises GDP temporarily, but infections rise over the next months to 
a level at which many people choose to work from home, where they 
are less productive, driven by the fear of infection. A longer lock-
down eventually mitigates the GDP loss as well as attens the infection 
curve. Second, if the UK had adopted South Korean policies, its GDP 
loss and infections would have been substantially smaller both in 
the short and the long run. This is not because Korea implemented 
policies sooner, but because aggressive testing and tracking more 
effectively reduce infections and disrupt the economy less than a 
blanket lock-down. Finally, low-skill workers and self-employed lose 
the most from the epidemic and also from the government policies. 

1 Assisant Professor, Myongji University.
2 Reader, Queen Mary University of London and CEPR Research Affiliate.
3 Douglass C. North Distinguished Professor of Economics, Washington University in St. Louis and Federal 

Reserve Bank of St. Louis Research Fellow.
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However, the policy of issuing "visas" to those who have antibodies 
will disproportionately benefit the low-skilled, by relieving them of 
the fear of infection and also by allowing them to get back to work.
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1 Introduction

As the COVID-19 pandemic went under way, with no known vaccine or cure, most
governments turned to quarantine policies to “flatten the curve.” Some of the policies
are selective and targeted, based on testing and tracing, while others were more blunt,
indiscriminately imposing social distancing and lock-downs. The urgency of the situa-
tion and the lack of real-time data have not allowed a thorough analysis of the economic
and epidemiological impact of such policies. Which policy is more effective in arresting
the epidemic? How big are the economic costs of the quarantine policies that disrupt
most economic activities? How are the impacts of the epidemic and the governments’
countermeasures distributed across people of different socioeconomic standings? These
questions remain largely unanswered. In the midst of the intense debates on whether to
open up to save the economy or to stay locked down till the epidemic further subsides,
addressing these questions is of paramount importance.

To answer the questions, we develop a quantitative economic-epidemiological model,
in which the progression of the epidemic affects people’s economic decisions and vice
versa. The model has several novel features that make it unique in the nascent but
fast growing literature of epidemic economics. First, to evaluate how the impact of the
epidemic and the policies are distributed, the model incorporates rich heterogeneity:
People differ by skill and age, and there are multiple sectors and occupations. Second,
people choose their occupations and whether to commute to work or work from home,
to maximize income and minimize the fear of infection. Occupations are different in
terms of earnings, infection risks, and the productivity loss when working from home.
Working from home entails lower earnings but curtails the risk of infection. Third,
true health states are not observable, and people have to be tested to find out their
current infection status (or past status, if antibody tests are available) subject to false
negatives. Finally, governments have access to three policy tools: testing, tracking
(targeted quarantine), and broad lock-downs. The intensive margins of these tools are
adjustable, and so is their timing.

Our model provides a framework for quantitative analysis and can be used to eval-
uate and predict the aggregate and distributive effects of real-world policies in various
economic settings. The quantitative nature of our analysis sets it apart from most
other works in the literature, which tend to be either empirical or theoretical. In this
paper, we choose the model parameters to replicate the progression of COVID-19 in
South Korea and the United Kingdom (henceforth SK and UK, respectively). These
two make an interesting and informative contrast. SK responded early with aggressive
testing and tracking, and largely contained the epidemic. The UK on the other hand
belatedly imposed a blanket lock-down, and its containment efforts have not been as
successful.

Based on our quantitative analysis of the two countries, we obtain three key results.
First, contrary to the common view, there may not be a clear trade-off between

GDP and public health after all. It is true that, since a lock-down prevents people
from working normally, it can slow down the rise in infection at the expense of lower
economic output. It is also true that a premature lifting of the lock-down increases
GDP initially at the expense of rising infections. However, if the lock-down is lifted too
soon, infections can rise to a level at which most people voluntarily work from home
out of fear of infection, and this would happen in a matter of months. The government
may try to impose another round of lock-downs, but all the countermeasures lose their
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potency once infections reach a certain threshold. For the UK, an extended lock-down
pushes peak infection from early to late autumn, and 5-percent higher GDP throughout
the summer. In other words, a stricter and longer lock-down can deliver both higher
GDP and better public health outcomes.

Second, if the UK had adopted the SK policies, its GDP loss would have been
smaller by two-thirds both in the short and the long run, and the cumulative infec-
tions through November would have been three orders of magnitude smaller. This is
not merely because SK implemented policies sooner: The model shows that an earlier
implementation of the lock-down in the UK has minor effects on GDP and infection.
Rather, it is because aggressive testing and tracking can more effectively isolate the
infected and hence reduce their chance of infecting other people, without forcing every-
one, including the large majority that is not infected, to work from home where they
are less productive.

Third, the epidemic or the policies implemented to counter it do not affect people
equally. Low-skill jobs tend to be more contact-intensive (e.g., restaurants and retail),
which means that (i) low-skill individuals face higher infection risks and hence suffer
more from the fear of infection, and (ii) it is hard to do their work from home and
hence their earnings loss when working from home is larger. For these reasons, low-
skill workers and self-employed are disproportionately affected by the epidemic and
the government’s countermeasures that make them work from home (be it through
testing, tracking and/or lock-down), and some low-skill workers in particular switch
jobs in response. One exception is the potential policy of issuing “virus visas” to those
who have antibodies: This policy will disproportionately benefit the low-skill workers
and self-employed, by relieving them of the fear of infection and also by allowing them
to get back to work. A visa policy can raise UK’s GDP by 2 percent compared to its
baseline lock-down policy in our model, entirely driven by a 5-percent higher output
in low-skill sectors. This result suggests that antibody tests should prioritize the low-
skilled, not only to help those most in need, but also to have a maximal positive effect
on aggregate GDP.

Related literature Our paper belongs to the new strand of literature that in-
corporates the SIR epidemiology model by Kermack et al. (1927) or its variants into
economic environments. Our innovation on the epidemiology side is to consider asymp-
totic carriers, which is crucial in the evaluation of testing policies, and heterogeneous
infection rates by worker type, which can alter the spread of the virus depending on
which people are quarantined. For the production structure, we use a simplified version
of our existing work on sector/occupational heterogeneity in Lee and Shin (2017), and
refer to Hensvik et al. (2020); Mongey et al. (2020) to guide our choice of work-from-
home productivity differences across sector-occupations, as well as which jobs are more
“essential” in the event of a lock-down.

Insofar as we focus on the quantitative impact of virus containment policies to gauge
the interaction between economic activities and the spread of the virus, our paper is
related to the more theoretical papers such as Alvarez et al. (2020), Eichenbaum et al.
(2020), and Piguillem and Shi (2020) that analyze optimal quarantine policies consid-
ering similar trade-offs. In particular, Piguillem and Shi (2020) is closest to our work
in that theirs is the only other model that is calibrated to actual data moments (Italy)
and highlights the effectiveness of testing policy under the possibility of asymptotic car-
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t t+ 1

work-from-home
choice by employer

produce, earn
and consume

occupational
choice

virus and other sickness spreads
sick and infected recovers

Testing on a/symptomatic
reveals confirmed cases

Fig. 1: Model Timeline

riers. We expand on such papers by considering a more elaborate heterogeneous-agent
equilibrium model of production in which people voluntarily choose to self-quarantine
themselves out of fear and are unaware of their own infection status without testing.
We also consider different dimensions of government-enforced quarantines (ordering
people to stay home is different from enforcing that order, e.g. lock-down orders vs.
SK-style digital tracking).

The potential importance of voluntary self-quarantine in response to the epidemic
shock is also emphasized in Farboodi et al. (2020) and Chudik et al. (2020). The latter
argues that self-quarantine is unlikely to lower infection rates unless the epidemic
approaches very high levels, so that mandated social distancing could be required
to flatten the epidemic curve, which we find to be true in our calibration. While
Chudik et al. (2020) focus on the estimation of the epidemiology parameters, we focus
on the quantitative impact on GDP and inequality. Krueger et al. (2020) consider
heterogeneity in individuals’ consumption choices, and show that an endogenous shift
of consumption toward low contact goods from high contact goods can mitigate the
negative impact on the economic activity. In contrast, we focus on the heterogeneity in
individuals’ labor supply choices, and delve deeper into distributional issues in addition
to the aggregate impact of COVID-19.

We explicitly model the fact that high levels of voluntary self-quarantine leads
to GDP losses, as well as how self-quarantine interacts with various policy options,
concluding that the combination of test/trace/tracking is the most effective tool from
both an economic and epidemiology perspective. To our knowledge, this paper is the
first quantitative analysis that explicitly fits both country level data on GDP and
employment in conjunction with COVID infection/death counts, as well as inequality
in both economic and epidemiological outcomes.

2 Model

Time is discrete, and one model period is one day. At t = 0, there is an influx of
infected agents into the economy, but nobody is aware of it until the government starts
testing at some later date τ > 0. We allow for asymptomatic carriers and also for
similar symptoms not caused by the coronavirus: People could show no symptom
when infected with the coronavirus, and could exhibit similar symptoms without the
coronavirus (e.g., sick with the flu). People start the day with a health status and in
the job they chose last night, and in the morning, decide whether to commute or work
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from home. Then they work and consume, and prices are determined to clear markets.
Over the course of the day, the virus spreads, and some of the infected people recover.
Their health status (symptomatic/asymptomatic) also gets updated. In the evening,
if t ≥ τ , people may get tested. Given the test results and their updated health status,
they decide whether to stay in their job or switch to a new job. The whole cycle repeats
itself the next day.

Below, we describe the model details without a time-subscript. The model’s daily
timeline is shown in Figure 1.

2.1 Individual States

Immutable states People are either young or old, and given the focus on the
short-term dynamics, we ignore aging. People do die with or without COVID-19 and
exit from the model. The old are all retired and do not work. We will also assume that
all of the old are in self-quarantine in the presence of COVID-19. These assumptions
imply that the model treats the old as a single block, although their epidemiological
states to be defined below will differ from one another and change over time.

On the other hand, the young are either high-skilled or low-skilled, indexed by x ∈
{l, h}, which is a permanent characteristic. In every period, they choose occupations
and, unlike the old, may or may not be in quarantine. Like the old, their epidemiological
states are heterogeneous and change over time.

In summary, one’s age (young or old) and skill (only for the young) are held per-
manently constant.

True epidemiological states The true epidemiological side of the model extends
the SIR model, and we have four states: susceptible (S), infected (I), recovered (R)
and dead (D). Needless to say, death is an absorbing state. We assume that those
recovered will not be infected again, although this is not a foregone conclusion in the
medical literature.

One important distinction we make is that these true epidemiological states, with
the exception of death, are not observable to the people or the government in the
model. As a result, they will make decisions based on observed epidemiological states
defined below.

Observed epidemiological states People are either healthy (asymptomatic, a)
or sick (symptomatic, s), both with and without the SARS-CoV-2 (“the virus” here-
after). By now it is well known that some people with the virus exhibit no symptom.
In addition, in the model it is possible that someone without the virus can be sick with
symptoms (for example, because of the flu) similar to those of COVID-19. In terms
of testing for the virus, people fall into three categories: untested or tested negative
(superscript 0), tested positive (superscript c), and confirmed remission (superscript
r). False negative is a possibility, but false positive is not. As a result, we have seven
observed epidemiological states: two symptom categories by three test categories, plus
death: {a0, s0, ac, sc, ar, sr, d = D}. The true and observed epidemiological states co-
incide perfectly only at death. The two diverge because not everyone is tested and also
false negative is possible.
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2.2 The Economic Model

Preferences and Technology For utility out of consumption, we assume that

u(c) = log(1 + c),

which is somewhat unconventional but it is equivalent to Stone-Geary log-preferences
with one unit of “free consumption.” This is to allow for zero earnings. We will also
introduce additively-separable disutility terms coming from the epidemiological side.

There are three sectors of production. Two of them produce intermediate inputs
and are labeled “high-skill” and “low-skill” in reference to the skill levels of the people
who work in them. The other is the final good sector, combining the output of the
high- and the low-skill sectors with a constant-return-to-scale production function:

Y = Y θ
l Y

1−θ
h (1)

where 0 < θ < 1 is a share parameter. The production is done by a perfectly-
competitive, representative firm, and the final good price p is normalized to one.

For the high-skill and the low-skill sectors, indexed by x = h, l, there are two
modes of production. First, a healthy self-employed person who commutes to work
produces zx,1 units of the skill-x good without hiring any additional labor, where the
subscript 1 denotes self-employment. Second, a healthy manager who commutes to
work, and whose skill is x can hire workers of the same skill and operate a span-of-
control production function:

yx,2 = zαxx,2l
1−αx
x,3 , (2)

where zx,2 is the efficiency unit as a manager (subscript 2) of skill x and lx,3 is the
efficiency units of the workers (subscript 3) of the same skill x hired. The parameter
1 − αx is the span of control. The skill-x output produced by the two modes are
perfectly substitutable. The price of the high- and the low-skill goods are denoted by
ph and pl respectively, and all producers are price takers.

2.2.1 Individual Choices

In the model, the old are retired and always in self-quarantine, and hence have no
decision to make. The young will choose their occupation and quarantine status based
on their skill and observed epidemiological states.

Work-from-home decision Our timing convention is such that the young choose
an occupation at the end of each period. There are three occupations for each of the
two skill levels: self-employment (non-employer), manager, and worker, which we index
by j = 1, 2, 3. The self-employed decide whether to work from home (self-quarantine)
or work normally (not in quarantine), and the managers decide whether they and/or
their workers will work from home or not. Workers do not have such a decision—they
are told by their managers to either work normally or work from home.

Working from home makes people less productive, and their efficiency units are
multiplied by a factor ψx,j that is less than one, which varies by the two-by-three
skill-occupation groups.
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Sick people are less productive whether they work normally or from home, so the
efficiency units are multiplied by a factor φ that is less than one if and only if sick
(symptomatic, e ∈ {s0, sc, sr}), regardless of whether or not they have the virus. In
addition, working normally (not in quarantine) while sick causes disutility κ. This
productivity loss and the disutility from working while sick are the same for all skill-
occupation groups.

The wage per efficiency unit of high-skill labor is wh and that of low-skill labor is
wl. For tractability, we assume that when making the work-from-home decision, the
self-employed and managers use adaptive expectations and base their decisions on the
equilibrium prices from the previous period.

The self-employed (subscript 1) with skill x and observable epidemiological state e
choose to work normally (n) or work from home (q):

Vx,1(e;p) = max
ι∈{n,q}

{
V n
x,1(e;p) + εn, V

q
x,1(e;p) + εq

}
, (3)

where ει for ι = n, q is i.i.d. extreme value preference shocks. The work location choice
is made after the realization of the preference shocks. The aggregate state p is the
vector of market-clearing prices and wages from the previous period. The two values
of working normally and from home are

V n
x,1(e;p) = u [φ(e) · pxzx,1]− κ(e)− χx,1 (I, e)

V q
x,1(e;p) = u [ψx,1φ(e) · pxzx,1]− χq (I, e) . (4)

The self-employed with skill x produce zx,1 units of output without using any input,
and the output price is px. The parameter ψx,1 < 1 discounts their productivity when
working from home, which differs by skill x. The reduced productivity for being sick
φ(e) is less than one for e ∈ {s0, sc, sr} and equal to one otherwise. The utility from
hand-to-mouth consumption is the first term. Individuals also dislike working normally
while sick and would rather work from home, as measured by κ(e).1 The last term
χ (I, e) is the disutility from the fear of infection, which differs depending on whether
or not an individual chooses to stay at home (effectively quarantining oneself).2 Fear
depends on the entire distribution of the masses of the infected across all groups (the
vector notation I, whose i-th element is the mass of those infected in group i). However,
if e ∈ {ar, sr}, the individual knows that he is immune and no longer has this fear.3

Similarly, the values of managers of skill x (subscript x, 2) working normally (n) or
from home (q) are:

V n
x,2(e;p) = u [φ(e) · πxzx,2]− κ(e)− χx,2 (I, e)

V q
x,2(e;p) = u [ψx,2φ(e) · πxzx,2]− χq (I, e) . (5)

1This is distinct from a general disutility from being sick, which we ignore as it does not alter choices.
2Our reduced form specification can capture a direct disutility from high infections, but also the expected

loss in future earnings from becoming infected tomorrow.
3People do not know whether they are infected/recovered without testing, and the government does not

know who is infected either. However, they still know the total number of infected by skill, occupation, and
observed health status, as long as they know the deterministic epidemiological laws of motion in Section 2.3
and the history of confirmed cases. This is why I is an admissible argument of individual preferences.
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The main difference from the self-employed is the return to their skill πx:

πx = αxpx ·
[

(1− αx)px
wx

] 1−αx
αx

,

which is the maximized profit per efficiency unit of managerial skill. The managers’
productivity discount when working from home, ψx,2, and their fear from infection,
χx,2(I, e), differ by skill x and also from those of the self-employed or the worker
(hence subscript 2).

In addition, managers decide whether their workers will work normally or work from
home. For this decision, managers act like a “paternalistic planner” and maximize a
modified version of the workers’ objective function. Specifically, a manager’s problem
regarding a worker with skill x and observed health status ex,3 is:

max
ι∈{n,q}

{ u [φ(e) · wxzx,3] + εn, u [ψx,3φ(e) · wxzx,3] + εq } , (6)

where the u[·] term is the worker’s utility from consuming his labor income, which is
the product of the wage wx and his labor efficiency units zx,3, discounted by φ for being
sick and/or ψx,3 for working from home. For each worker, the manager draws i.i.d.
extreme value preference shocks ει and make the worker’s work location decision.

We compare this objective function of the “paternalistic” manager with the actual
values of a worker with skill x and observed epidemiological state e for the period:

V n
x,3(e;p) = u [φ(e) · wxzx,3]− κ(e)− χx,3 (I, e)

V q
x,3(e;p) = u [ψx,3φ(e) · wxzx,3]− χq (I, e) . (7)

We see that the paternalistic managers ignore the disutility from working normally
while sick κ as well as their fear when making the work-from-home decision.

Due to the extreme value assumptions on the preference shocks for work location,
the fraction of the self-employed, managers and workers working from home, Prqx,j(e,p)
for j = 1, 2, 3, can be easily calculated from the values in equations (4), (5) and (6)
as conditional choice probabilities (CCP). Because the workers do not make the work
location decision themselves, the values in (6) are used, not those in (7). To be specific,
for j = 1, 2,

Prqx,j(e,p) =
1

1 + exp
[
V n
x,j(e;p)− V q

x,j(e;p)
] . (8)

In the event of a lock-down, the government force people to work from home. Let
ρx,j(e) denote the fraction of people of skill-occupation x-j with epidemiological state
e prevented from commuting to work. Then the actual fraction of people who stay
home is

Pr
q
x,j(e,p) = max

{
ρx,j(e),Prqx,j(e,p)

}
. (9)

Occupational choice At the end of each period, after production takes place and
everyone’s true and observable epidemiological states are updated, the young choose
occupations for the next period subject to an important friction: Only a fraction
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ν < 1 of those who want to switch occupations can do so. This assumption prevents
unrealistically high volumes of occupation changes at a high frequency. (A period in
the model is a day.)

The occupation choice is myopic: People will choose the occupation that maximizes
the current period profit/wage minus the disutility of working while sick and the disu-
tility from the fear of getting infected. This is a static choice but the last term captures
a notion of continuation value. When making the decision, they have updated informa-
tion about their status ē, which they know from testing, and also about realized market
clearing prices of today, p̄.4 The values also include i.i.d. extreme value preference
shocks εj for each occupation, and people are aware that tomorrow’s work-from-home
decision will be subject to the same i.i.d. extreme value preference shock ει. To be
specific, the occupation choice is

max
j=1,2,3

{
Pr

q
x,j(ē,p) · V q

x,j(ē, p̄) +
[
1− Pr

q
x,j(ē,p)

]
· V n

x,j(ē, p̄) + εj

}
.

The values of working normally or from home (ι = n, q) for a skill-occupation combi-
nation x-j, V ι

x,j are defined in equations (4), (5) and (7). The probability of working
from home for each occupation is in equations (8) and (9). Note that the realized price
vector p̄ that clears the market, and used for occupation choice, is different from the
price p that individuals use to make their work-from-home decisions.

We reiterate that only a fraction ν < 1 of those who want to switch occupations
are given the opportunity to do so.

2.2.2 Equilibrium

Once the work location choices are made as in equations (4)–(6), the wages and the
output prices are determined to clear labor and goods markets. The wage per efficiency
unit of skill x is

w̄x = (1− αx)p̄x ·
(

Λx,2
Λx,3

)αx
where Λx,j is the total efficiency units of skill x and occupation j supplied, taking
into account the occupation-specific productivity zx,j , the fraction of sick individuals
and sickness discount φ, and the fraction of those working from home and the home
discounts ψx,j .

Since the two intermediate goods indexed by skill x are combined by a CES function
to produce the final good, the intermediate good market clearing condition is

p̄h
p̄l

=
1− θ
θ
· yl
yh
,

where yx is the total output of the self-employed and managers of skill x, or occupations
(x, 1) and (x, 2), taking into account the skill-occupation-specific productivity zx,j , the
fraction of sick individuals and sickness discount φ, and the fraction of those working
from home and the home discounts ψx,j . The final good is the numeraire and its price,
p, satisfies

1 = p̄ =
( p̄l
θ

)θ ( p̄h
1− θ

)1−θ
.

4This is a form of “adapted expectations” since the occupation choice is for tomorrow and the resulting
market clearing wages and profits will be different from the current values on which the decision is based.
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2.3 The Epidemiological Model

The epidemiological side of our model is a heterogeneous-agent version of the SIR
model. To be specific, there are eight distinct groups to keep track of: six skill-
occupation groups working normally, all the young people working from home (or in
quarantine), and the old. For the economic side of the model, we need to keep track
of who works normally or at home for each skill-occupation group. However, the
epidemiological law of motion applies equally to all the young working from home,
regardless of their skill or occupation. As a result we have seven groups for the young
rather than twelve (six skill-occupations by two work locations). The old are also in
quarantine, but subject to a different epidemiological law of motion.

2.3.1 True Epidemiological States

For each of the eight group indexed by i, there are four true epidemiological states and
their respective mass is denoted by Si (susceptible), Ii (infected), Ri (recovered), and
Di (dead). Let I ≡ (Ii) be the vector of the masses of the infected across all eight
groups. We use bars on the masses to denote the masses at the end of the period. The
true epidemiological states for each group i evolve as follows.

S̄i
1− δi

= [1− vi(I)]Si

Īi
1− δi

= vi(I)Si + (1− γi)(1−mi)Ii

R̄i
1− δi

= γi(1−mi)Ii +Ri

D̄i = Di + δi(Si + Ii +Ri) + (1− δi)miIi

The baseline death rate is δi and the group-specific infection rate as a function of the
masses of the infected across the eight groups is vi(I). The recovery rate is γi and the
added mortality from the virus is mi. In essence, we have eight separate SIR models
for the eight groups, linked by the dependence of the infection rates on all groups’
infected masses. Note that we assume complete immunity once a patient recovers.

Each period, a fraction of the susceptible dies or becomes infected, and the infection
rates depend on the distribution of infected masses across the eight groups. The
dependence itself varies across the eight groups (hence vi(I)). These assumptions allow
us to capture the facts that people can get infected more easily by their coworkers
(including managers) than by the general public and that sectors may differ in how
often their workers may infect their customers. They can also capture the obvious fact
that people in quarantine are both less likely to get infected and infect others (those
in quarantine are one of the eight groups). Moreover, the function can also capture
the effectiveness of tracking or lock-down policies: That is, the government has some
control over how much it can socially isolate people in quarantine, as we explain in the
next section when we specify functional forms for vi(I).

While some of the infected die (baseline death rate δi plus the additional mortality
from the virus mi), a fraction γi recovers.
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2.3.2 Observed Epidemiological States

The true epidemiological states are not observed (with the exception of death), and
hence people do not know whether they are susceptible, infected or recovered without
testing. Even then, we allow for false negatives. Infected people may not show any
symptoms, and the susceptible and even the recovered may show symptoms.

We now explain how we keep track of the observed epidemiological states. We
define the mass of the infected that are unconfirmed after infection and recovery take
place but before testing is done at the end of the period:

Îi = Īi − (1− δi)(1−mi)(1− γi)ci,

where ci is the mass of the confirmed infected at the beginning of the period. Similarly,
we define the mass of the recovered that are unconfirmed after infection and recovery
take place but before tests are done at the end of the period:

R̂i = R̄i − (1− δi) [γi(1−mi)ci + ri] ,

where ri is the mass of the confirmed recovered at the beginning of the period. A
person is confirmed recovered either if he tests negative after having tested positive or
if his recovery is confirmed by an antibody test.

Then at the end of a period, after tests are administered, the mass of the uncon-
firmed without symptoms ā0

i and the mass of the unconfirmed with symptoms s̄0
i for

each group indexed by i are

ā0
i = (1− fi)S̄i + (1− ωτa)(1− ηi)Îi + (1− IABωτa)(1− fi)R̂i, (10a)

s̄0
i = fiS̄i + (1− ωτ s)ηiÎi + (1− IABωτ s)fiR̂i, (10b)

where fi is the probability of getting sick (symptomatic) when susceptible or recov-
ered and ηi is the probability of getting sick when infected. Fractions τa and τ s of
the asymptomatic unconfirmed and the symptomatic unconfirmed are tested, respec-
tively, and ω is the probability that the test correctly detects the virus. The indicator
function IAB is one if anti-body tests are available and zero if not. The mass of the
asymptomatic unconfirmed ā0

i consists of (i) the susceptible who are not sick, (ii) the
asymptomatic unconfirmed infected who get either untested or get a false negative re-
sult, and (iii) the asymptomatic unconfirmed recovered who get either untested or get
a false negative result for antibody, if antibody tests are available. Similarly, the mass
of the symptomatic unconfirmed s̄0

i is the sum of (i) the sick susceptible, (ii) the symp-
tomatic unconfirmed infected who are untested or given false positive, and (iii) the
symptomatic unconfirmed recovered untested or tested false negative for antibodies.

The masses of the confirmed infected c̄i and the confirmed recovered r̄i after testing
at the end of the period are

c̄i = (1− δi)(1−mi)(1− γi)ci + ω [τa(1− ηi) + τ sηi] Îi, (11a)

r̄i = (1− δi) [ri + γi(1−mi)ci] + IAB · ω [τa(1− ηi) + τ sηi] R̂i. (11b)

The mass of the confirmed infected is the previous period’s mass net of death
and recovery, plus the newly confirmed of the unconfirmed infected. The mass of
the confirmed recovered is the previous period’s mass net of death, plus those of the
confirmed infected who recover this period and, when antibody tests are available, the
newly confirmed of the unconfirmed recovered. Obviously, cj and rj are zero from t = 0
to t = τ , assuming that the virus hits at time 0 and testing begins at time τ .
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2.3.3 Infection Rates

Let I (with no subscript) denote the total mass of infected in the population, i.e.,
I ≡

∑
i Ii for all Ii ∈ I. We denote by Q the effectiveness of quarantine policies and

assume that the mass of the infected who actually spread the disease is

I∗ = I −QIq, 0 ≤ Q ≤ 1, (12)

where Iq is the mass of the infected in the quarantine group, i = q. In this setup, Q is a
policy variable that controls the intensive margin of quarantine policies.5 For example,
the government can regularly check if people in quarantine are actually staying home
by means of digital tracking, such as in SK, or by police-enforced lock-downs, as in most
other countries. This is different from the extensive margin of quarantines, which bars
people from commuting to work but not checking whether they actually stay home.
For example if Q = 1, all the young people working from home (Iq) are staying home
and not infecting anyone. On the other hand, if Q = 0, all the people working from
home actually go around socializing and infecting others.

We now specify the infection rates vi(I) for the eight groups indexed by i. First, for
the old, those in quarantine, and the self-employed (i ∈ {o, q, (l, 1), (h, 1)}), we assume:

vi(I) = v̄i ·
I∗

N
,

where N is the population size. So their infection rates depend only on the total mass
of the infected, net of those effectively quarantined.

For managers and workers working normally, i ∈ {(l, 2), (l, 3), (h, 2), (h, 3)}:

vi(I) = v̄i ·
[
βii ·

I∗i
Ni

+ βki ·
I∗k
Nk

+ (1− βii − βki ) · I
∗

N

]
,

where k = (x, 3) if i = (x, 2) and k = (x, 2) if i = (x, 3), I∗i is the effective mass
of infected people still commuting in occupation i, taking into account government
enforcement, and Ni is the mass of individuals in occupation i (that is, those working
normally and those working from home combined). This captures the idea that the
infection rates can be more sensitive to the mass of infected coworkers (managers and
workers) than the mass of the infected general public.

2.4 Government Policies

We consider three types of government policies in the model: testing, tracking, and
lock-down.

1. Testing. Equations (10) and (11) introduced τa and τ s, the fractions of asymp-
tomatic and symptomatic people who are tested, after the spread of the virus
within a period. Testing the asymptomatic can be viewed as “tracing,” a policy
testing all the people who have come into contact with a positively confirmed
person even if they are asymptomatic.

5The government cannot observe anyone’s true epidemiological state either. The enforcement applies
equally to everyone in quarantine (group i = q).
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2. Tracking. Tracking means an effective enforcement of quarantine, as measured
by the variable Q in (12). An effective tracking ensures that those who should be
home are indeed staying home and not infecting others.

3. Lock-down. A lock-down forces people to work from home, as operationalized
by ρx,j in equation (9). People in our model decide whether to work normally or
from home, so if a large enough a share of people are already voluntarily working
from home, this policy is not binding. Furthermore, a lock-down mandates that
certain people work from home but does not automatically ensure that they do
not go out socializing and infecting others. In our language, tracking ensures that
those in quarantine do indeed stay home.

The three policies are distinct and enter the model via separate sets of variables. A
government can choose to implement any combination of them.

3 Quantitative Analysis: SK vs UK

SK’s response to COVID-19 has been lauded for its successful test and tracking policies.
Thus, our benchmark calibration will be targeted to SK data on infections, recoveries
and GDP losses. But precisely because its suppression of COVID was so successful, we
find that the fear factor (as measured by the parameter χ in our model) plays no role
in explaining SK data. Thus, we calibrate the fear factor along with an additional set
of parameters for the UK, including its lock-down policy.

We then check the importance of the fear factor and the benefits of each country’s
policy by simulating the following counterfactual scenarios:

1. No intervention, SK and UK

2. SK’s policy (high test and tracking) on UK

3. UK’s policy (lock-down) on SK

4. Early or extended lock-down for UK

5. UK lock-down followed by virus “visas” on June 20th

Scenario 1 will illustrate how far-reaching the epidemic would have been absent any
intervention. The remaining scenarios will show that, at least in our model, tracking
is better than lock-downs, with a minimal effect on GDP. The last scenario will show
that virus visas based on antibody tests are disproportionately beneficial for the low-
skilled. This calls for redistributive antibody testing aimed at the low-skilled rather
than random testing, as is called for in Germany.

3.1 Calibration

Economic parameters All the economic parameters are calibrated to SK. We fix
the mass of the young population (ages 25-64) at 1 at time 0, and the old (age 65+) at
0.26, according to the population data from the Korean Statistical Information Service.
Employment shares are computed from the Korea Labor Force Survey (KLFS), a
monthly employment survey equivalent to the Current Population Survey in the United
States. As shown in Table 1, the survey records whether an individual is self-employed
with no workers (non-employers or single-worker firms) or an employer. We can also
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August 2019 Self-employed Employer Manager Worker

Low-wage industries 3,522 1,152
159 11,068

(2.46) (1.66)

High-wage industries 605 382
205 9,127

(2.86) (2.04)

February 2020 Self-employed Employer Manager Worker

Low-wage industries 3,398 1,109 148 10,942

High-wage industries 626 351 192 9,110

March 2020 Self-employed Employer Manager Worker

Low-wage industries 3,510 1,072 150 10,719

High-wage industries 629 325 198 8,989

Table 1: Employment in SK (in thousands)
Self-employment: single employer-employee; Employer: self-employed with non-zero employees; Manager:
employees in a managerial position. Monthly wage information (in parentheses, million KRW) is only
included in the August supplement. Both employment counts and wages are inferred by using sample
weights on 35,000 observations. Source: Korea Labor Force Survey.

identify employees in a managerial position using their occupation code. Only the
August includes a wage supplement and March is the most recently available iteration.

Low- and high-skill workers in our model are differentiated by effective produc-
tivity (z), as well as their productivity when working from home. Since the latter
largely varies by industry (Mongey et al., 2020), we broadly classify industries into
low- and high-wage industries as follows so that low-skill industries’ employment share
is approximately 60 percent:

1. Low-skill (l): Transportation & warehouses, Construction, Retail & wholesale,
Real estate, Support, Personal services, Health & social assistance, Arts, sports
& Entertainment, Agriculture, Foods and accommodations

2. High-skill (h): Utilities, Finance, Professional, Information, Manufacturing, Min-
ing, Public, Education

High-skill industries generally require less social interaction at the workplace. How-
ever, since we also let home-productivity vary by occupation, we will discount high-skill
workers’ productivity more than the high-skill self-employed and managers.

As shown in the table, employment shares remained roughly constant in SK, despite
its early COVID-19 outbreak in February (compared to the UK) and the drop in
industrial production of approximately 3.5 percent in February 2020 (month-to-month,
seasonally adjusted). Thus, we consider the August employment and wage statistics
to constitute the initial steady state.

We use the August KLFS to calibrate a subset of the economic parameters as
follows. First, we initialize employment shares, L0

x,j by skill and by assuming the
self-employed (j = 1) and workers (j = 3) in the model respectively correspond to self-
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Parameter Value Description

Ly 1 Mass of young
Lo 0.2562 Mass of old

L0
l,j [0.1343, 0.0500, 0.4221] Initial employment share

L0
h,j [0.0231, 0.0224, 0.3481] by industry/occupation

ψ0
l,j [ 0.10, 0.10, 0.07 ] Home productivity discounts
ψ0
h,j [ 0.70, 0.70, 0.49 ] by industry/occupation

φ 0.7 Sick productivity discount

zl,j [0.9167, 1.0, 1.0] Effective productivities
zh,j [1.3594, 1.3, 1.3] by industry/occupation
κ 0.1115 Sickness disutility
αl, αh [0.1493, 0.0827] Manager income share by industry
θ 0.4540 Low-skilled share in final good production

µq, σ [0.4667,0.3333]
Extreme value distribution

for home-work choice
µl,j [0,-0.9832,1.2349] Extreme value distribution
µh,j [0,-0.0145,2.8562] for occupation choice
ν 0.01 1% of individuals can switch occupation

Table 2: Economic Parameters

employed and to non-manager employees in the KLFS, and managers (j = 2) in the
model to employers and employees in managerial positions in the KLFS. Employment
shares are shown in the second panel of Table 2.

We then set, for now, the home and sick productivity discounts arbitrarily, making
sure that low-skill jobs and workers suffer heavier discounts, as shown in the third
panel. Given these parameters, we calibrate zx,j , κ, αx and θ as follows. Suppose that
there is no epidemic, so the fear factor is irrelevant. Also suppose that there is no
preference shock, neither for working from home decisions nor occupation choices.

1. We normalize manager-worker productivities to be equal and set high-skill work-
ers to be 30 percent more productive than low-skill workers.6 We then choose
the self-employed productivity, zx,1, so that they are indifferent between staying
self-employed or becoming a manager.

2. We choose κ so that high-skilled are indifferent between working from home or
not when sick. This ensures that low-skilled would never work from home, before
realization of the i.i.d. preference shock to stay home.

3. We assume that only high-skill self-employed and managers work from home when
sick. Then we can compute the manager share parameter αx to match manager
income shares from the KLFS. We can also set θ to match the low-skill income
share in the KLFS, assuming that self-employed and employer mean wages are

6These normalizations are innocuous, since in our model, the productivity parameters are not separately
identified from the manager share αx and the low-skill sector share θ.
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(a) South Korea
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(b) United Kingdom

Fig. 2: Infections, Recoveries and Deaths, Cumulative: SK vs. UK
Confirmed and released in log-10 scale (left), death counts on the right axis. Source: Korea Center for
Disease Control and Prevention, UK Department of Health and Social Care

equal to managers’.

Given these parameter values, we then simulate the economy with no epidemic. We
assume that the i.i.d. preference shocks for the work-from-home choice are drawn from
extreme value distributions with location parameters (µn, µq) and scale parameter σ,
with the normalization µn = 0. For the preference shocks when making occupation
choices, we normalize the scale parameter to one and the self-employment location
parameter to µx,1 = 0. We calibrate these location and scale parameters as follows:

1. Choose µq, the location parameter of the home preference shock, so that approx-
imately 15 percent of high-skill self-employed and managers work from home.
Then choose the scale parameter, σ, so that approximately 10 percent of low-skill
self-employed and managers work from home (Eurostat, 2020; Hensvik et al.,
2020).

2. Choose µx,2, µx,3, the location parameters for becoming a manager or worker, to
match initial employment shares L0

x,j .

Last, we arbitrarily assume that only ν = 0.01 of individuals can switch occupations.
The resulting parameters are shown in the bottom panel of Table 2.

Epidemiology and policy parameters Figure 2 shows the path of SK’s con-
firmed infections, recoveries and deaths from COVID-19 from January 21 to April 21.
We show the same data for the UK for comparison.

Since policies affect the course of the epidemic, for the model to match the paths
observed in Figure 2, the infection, recovery and mortality rates must be jointly cal-
ibrated with the policy parameters. Several of the SIR parameters are fixed loosely
based on what is known up to now about SARS-CoV-2.

1. Assume a natural death rate of 0 for the young, and a 2 percent annual death
rate for the old, based on SK mortality rates.
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2. Uniformly set a recovery rate of γ = 1/14 for the young, so that the infected
remain infectious for two weeks. We then assume that it takes twice as long for
the old to recover, or γo = 1/28.

3. Assume that the old experience a 10 times higher mortality rate, conditional on
contracting the virus (Center for Disease Control and Prevention, 2020).

4. Fix the infection rate of low-skill equal to the old. Fix the high-skill infection
rate to 90 percent of the old, and those in quarantine to 1/7 of the old. This
assumes that a person in quarantine makes one day worth of social contact per
week compared to a low-skill worker who commutes to work. High-skill jobs face
lower infection rates to capture the fact that they are in better health in general
and have better healthcare (Case and Deaton, 2020), and also require less social
interaction at the workplace (Mongey et al., 2020).

5. Suppose that workers and managers socialize more amongst themselves, and more
so for high-skilled. This is to capture the fact that high-skill industries are more
hierarchical.

Once these assumptions are made, there are four remaining parameters that de-
termine the progression of the virus absent any policy intervention: the COVID-19
mortality rate of the young, the COVID-19 infection rate of the old, the initial date
the coronavirus is introduced, and the initial mass of the infected on that day (I0).
Since the latter two are not separately identified (we can always choose an earlier date
assuming a lower mass of initially infected, and or the other way around), we arbitrarily
set the initial date to December 22, 2019, which is exactly one month before SK starts
publishing infection counts. Thus, confirmed cases start appearing on τ = 30.

We find that we cannot match the UK data using the same additional mortality
rate due to the virus for the old (mo) as SK, even taking into account different policies.7

So while we let this parameter differ between SK and UK, to more easily compare the
effect of policies, we keep all other epidemiology parameters equal between them.8 Of
course, to the extent that UK employment shares and earnings are different from SK’s,
some of the results should be viewed with caution. However, the comparative dynamics
does not vary much with the initial distribution of jobs and wages, as long as they are
qualitatively similar.

Then we make the following assumptions on the testing technology, as well as the
fraction of individuals who fall sick with or without the virus:

1. A fraction 1− ω = 0.2 of test results are false-negative (Yang et al., 2020).

2. Rather optimistically assume that antibody testing becomes universal on June
19, 2020, or 180 days after the emergence of the virus.

3. Assume that 40 and 60 percent of the young- and old-infected are symptomatic,
respectively (Mizumoto and Chowell, 2020).

7Thus, if the low death counts in SK are due to policies, they are beyond something we can capture
with our testing and tracking policies. Of course, at least some of the differences are due to different
demographics, social interaction patterns, medical systems, etc., which are reflected on the mortality rate
differences between the two countries.

8While the model is quantified to match each country, one can also view SK as a low mortality economy,
and UK as a high mortality economy.
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Parameter Value Description

δy 0 Young daily natural death rate
δo 5.48e-05 Old annual natural death rate of 2 percent

γy 1/14 Young recover in 2 weeks
γo γy/2 Old recover in 4 weeks

vo 0.1555 Old infection rate matches R0 = 2.18 in SK,UK
vl,j =vo Low-skill infection rate equal to old
vh,j =vo · 0.9 High-skill infection rate 90% of low-skill
vq =vo/7 Reduce social contact to 1 day a week in quarantine

[β2
l,2, β

3
l,2] [0.4,0.2] Low skill manager interaction with managers and workers

[β2
l,3, β

3
l,3] [0.2,0.4] Low skill worker interaction with managers and workers

[β2
h,2, β

3
h,2] [0.5,0.1] High skill manager interaction with managers and workers

[β2
h,3, β

3
h,3] [0.1,0.5] High skill worker interaction with managers and workers

mo (0.003,0.041) Old COVID mortality to match observed death counts in SK,UK
my =mo/10 Young mortality from COVID one-tenth of the old

I0 1.27e-05
500 people infected in SK on Dec 22nd (t = 0)

(assume same fraction of population for UK)

Table 3: Epidemiology Parameters

4. Arbitrarily assume that 10 and 20 percent of the young and old are sick when
uninfected, respectively.

Moreover, policy variables do not remain constant but change over time according
to observed reactions of the SK and UK governments. All dates are number of days
since December 22, 2019.

Jan 21 First confirmed case in SK. Thus, we set τ = 30 for SK.

Jan 31 First confirmed case(s) in the UK. Two people test positive. Thus, we set
τ = 40 for the UK.

Feb 10 UK health secretary announces strengthened quarantine policies (t = 50).

Feb 19 Shincheonji outbreak in SK, number of confirmed cases surge and country
intensifies testing and tracking (t = 59).

Mar 15-23 UK announces the possibility of, then implements, a lock-down (t = 84)

We assume that the date of the first confirmed case is the date testing commences
in the model, from which time onward all untested symptomatic and confirmed are
quarantined. The test probabilities (τa, τ s), as well as quarantine enforcement Q,
change values at each node of each country’s timeline, but remain constant until another
action is taken. The values of the parameters in each time interval are chosen to match
the observed path of confirmed infections in each country in each time interval.

To capture the effect of testing, tracking, lock-downs, and virus visas, we specify the
function ρx,j(e), the intensity at which the government prevents people from working
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Parameter Value Description

χ̄ 500 Fear factor: 20 percent GDP drop in UK at peak infection

ω 0.8 20 percent false negatives
tAB 180 Antibody test becomes universal

(fy, fo) (0.10,0.20) Old and young uninfected but sick
(ηy, ηo) (0.40,0.60) Young and old infected with symptoms

ρl,j [0.5,0.7,0.5] Fraction low-skill locked-down
ρh,j [0.9,0.9,0.9] Fraction high-skill locked-down

λ0 -0.15 20 percent GDP drop upon lock-down
λ1 0.01 1 percent decay in lock-down

(τa, τs) [timeline below] Test rates for a/symptomatic
Q = Q̄ [timeline below] Tracking policy

Country Date Event Testing Tracking

SK
Dec 22, t = 0 No detection (τa, τs) = 0 Q = 0
Jan 21, t = 30 = τ First detection (τa, τs) = 0.0004 Q = 0.4
Feb 19, t = 59 Shincheonji outbreak (τa, τs) = 0.1 Q = 0.9

UK

Dec 22, t = 0 No detection (τa, τs) = 0 Q = 0
Jan 31, t = 40 = τ First detection (τa, τs) = (0, 0.0004) Q = 0
Feb 10, t = 50 First quarantine (τa, τs) = (0, 0.0004) Q = 0
Mar 15, t = 84 = tλ Effective lock-down (τa, τs) = (0, 0.3) Q = 0.3

Jun 20, t = 180 = tAB Hypothetical virus-visas (τa, τs) = (1.0, 1.0) Q = 0.3

Table 4: Fear Factor and Policy Parameters

in equation (9), as

ρx,j(e) =

max
{

ρ̄x,j
1+exp(λ0+λ1(t−tλ)) , Q̄

}
if e ∈ {s0, ac, sc}

ρ̄x,j
1+exp(λ0+λ1(t−tλ)) otherwise.

(13)

where tλ is the date a lock-down commences.

1. Tracking: Absent a lock-down, ρ̄x,j = 0 for all (x, j). Thus, the government can
only quarantine the untested and confirmed with intensity Q̄. Since Q̄ is also a
measure of testing and tracking policies, we simply set Q̄ = Q.

2. Lock-down: Implemented at time t = tλ, a fraction ρ̄x,j(e) individuals of skill x
in occupation j are told to stay home, regardless of their symptoms. The function
varies by skill and occupation, but not by observed epidemiological status. If more
people in a certain state are voluntarily staying home, this policy is not binding.
However, the intensity at which this is enforceable decays over time, where λ0

measures the intensity of the policy upon impact and λ1 the duration.9

3. Virus visas: The government sets ρ̄x,j(e) to 0 for e ∈ {ar, sr}, while maintaining
the same intensity as a lock-down for everyone else.

9Thus, λ1 not only measures how strongly the government implements a lock-down, but also how willingly
people follow the rules.
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(a) Infections and Recoveries
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Observed
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(b) Deaths

Fig. 3: SK SIR Model vs. Data
“Observed” corresponds to confirmed cases in the model. Counts are cumulative and in log-10 scale. Data
source: Korea Center for Disease Control.

We set ρx,j = 0.5 for low-skill self-employed and workers, 0.7 for low-skill managers, and
0.9 for all high-skill. While somewhat arbitrary, this captures the fact that the “essen-
tial workers” during the COVID-19 crisis are concentrated among low-skill industries
and sectors, such as grocery workers, deliverers and security staff.

Finally, the fear factor itself plays a similar role as policy: If people fear the infection
enough, they will voluntarily stay home, and more so when infection rates are higher.
This would reduce the spread of the virus, but also drag down the economy. For
simplicity, we assume that

χi(I, e) =

{
0 if e ∈ {ar, sr}
χ̄ · vi(I) otherwise.

(14)

Thus the constant χ̄ measures the fear factor. The fear factor and the lock-down
parameter λ0 jointly determine the initial drop in GDP upon implementation of the
lock-down. Since the exact magnitude is yet unknown, we target a 20-percent drop
in GDP both upon implementation of the lock-down and at the peak of infection,
which is about the average of the IMF and UK Office for Budget Responsibility’s GDP
forecasts for the UK of 6.5 and 35 percent, respectively.10 The duration parameter λ1

is set arbitrarily at 0.01, so that the effectiveness of the lock-down decays by 1 percent
daily.

The resulting epidemiology, policy and fear factor parameters are summarized in
Tables 3 and 4. While the test rates are chosen to match the observed infection counts,
the mass of people tested should not be taken literally. As a policy, it measures how
available tests are. In SK, for example, testing costs approximately $40, which is
reimbursed if tested positive, so the actual cost is low. This made testing available
to the general public regardless of symptoms, but at the same time, the government

10Because SK effectively contains the virus early on, the fear factor never becomes quantitatively opera-
tional. Thus we cannot use SK moments to discipline χ̄.
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(a) Infections and Recoveries
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Fig. 4: UK SIR Model vs. Data
“Observed” corresponds to confirmed cases in the model. Counts are cumulative and in log-10 scale. Data
source: UK Department of Health and Social Care.

traced all individuals who came into contact with a confirmed person. Thus we set
testing rates to τa = τ s = 0.1 in SK from February 19 onward. The fact that Q = 0.9
in SK captures its digital tracking system, which may be infeasible if infections grew
larger but near perfect at its current level.

In contrast, tracing was never done in the UK, and strict self-quarantines are still
more or less voluntary even in the midst of the lock-down. So we maintain Q at a low
level, even as more people are told to go home following the lock-down. The difference
between the t = 40 and 50 in the UK is that in 10 days, the UK commences isolating the
symptomatic and confirmed: Before that, no action is taken beyond minimal testing.
Moreover, testing is still symptoms-based (τa = 0) and not readily available even for
many people with symptoms even now. Thus while τ s = 0.3 during the lock-down
is an optimistic representation of its policy, we maintain its high level both to match
the data but also to give the lock-down policy a chance.11 In any case, we find that
both a high τa (testing of asymptomatic) and high Q were necessary for SK’s successful
containment of the virus.

The results of our calibration are shown in Figure 3 and 4, for SK and UK, respec-
tively.12 There are several points to note. First, the kinks in the model infection curves
represent a change in policy in each country, which do not perfectly align with the data
but track its general path. Second, for a fair comparison, we have chosen parameters
so that our model slightly overshoots SK and undershoots UK, especially given that
the latter has higher infection and mortality rates. Third, there are discrepancies in
UK’s data reporting, for both recoveries and deaths. It is quite clear that recoveries
are not being reported daily, and also that information on deaths were not released

11We are still able to match UK’s infection path with slightly lower levels of τs, but that would lead to
higher calibrated values for UK’s infection probability parameters.

12The model is in masses, while data is in integer counts. We blow up the mass for SK by 39,314,000, its
age 25+ population in 2018. For the UK, we blow up this number further by 29.32 percent, according to
the population size from the Office of National Statistics.
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until later. Finally, the model captures that both SK’s testing and tracking policy and
UK’s lock-down have effectively “flattened the curve,” at least for now.

3.2 GDP and Inequality

Given that the model matches infection and death counts for each country, how much
did the containment policies matter for economic outcomes? First, in Figure 5, we
plot together low-skill, high-skill and aggregate GDP (not in per capita, to capture the
deaths from the virus), for both countries.

Jan 21 Mar 21 May 20 Jul 19 Sep 17 Nov 16
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Low-Skill
High-Skill
Total

(a) SK

Jan 21 Mar 21 May 20 Jul 19 Sep 17 Nov 16
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Low-Skill
High-Skill
Total

(b) UK

Fig. 5: GDP Losses: SK vs UK
Model implied GDP by skill, and total. GDP is in log-point changes and not normalized per capita, so
includes GDP losses from COVID-19 deaths (the working-young has a zero natural death rate).

SK’s GDP loss from January to March rises from 1.5 percent to 4.1 percent, which
is very close to the actual industrial production drop of 3.5 percent in the data. Since
this drop was not a targeted moment, it is a success of our model. In contrast, the
20 percent drop in the UK GDP was a target moment. But notice that GDP starts
dropping slightly even before the lock-down on March 15, which is partly due to the
(weak) quarantine policies put in place before the lock-down but mostly due to the
fear factor. Since the lock-down weakens after impact, there is a small recovery until
April, but then as the virus further progresses, GDP falls again due to the fear factor
(calibrated to reach a trough of 20 percent).

The fear factor is also why GDP falls between January and February in SK. How-
ever, the fact that GDP remains constant afterward implies that SK’s policy success-
fully contained the virus, so that the fear factor is no longer binding for most people
(and therefore there is no subsequent drop in GDP).

Perhaps more important, the drop in low-skill GDP is much larger than high-skill
for both countries. This is because the low-skill are less productive from home. The
relative drop is even larger when it is due to the fear factor. Even as high-skill GDP
recovers in the UK, low-skill GDP continues to drop because low-skill workers face
higher risks of infection at work and are thus more sensitive to the fear at very high
infection rates. In fact, high-skill GDP recovers almost entirely before the lock-down
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(a) Earnings
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Fig. 6: SK Dynamics by Skill-Occupation Group
SE: Self-employed, Mgr: Managers, Wkr: Workers. The left panel is changes in earnings in log points, and
the right panel is changes in employment shares.
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Fig. 7: UK Dynamics by Skill-Occupation Group
SE: Self-employed, Mgr: Managers, Wkr: Workers. The left panel is changes in earnings in log points, and
the right panel is changes in employment shares.
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fades away on June 20, so the only reason total GDP remains low afterward is because
low-skill GDP continues to drop to more than 40 percent below its initial value.

Earnings vary by occupation as well. In Figures 6 and 7, we plot together the
earnings and employment shares of each skill-occupation group for SK and UK, re-
spectively.

Employment shares in SK are close to constant, consistent with SK data in Table
1.13 Again, this implies that the fear factor is barely operational for individuals to
switch jobs (from the steady state shares at t = 0). However, earnings losses still vary
considerably by occupation. Workers and the self-employed stand to lose the most
because of the tracking policy (as more of them are infected, more are enforced to stay
home). In contrast, high-skill self-employed earnings drop little upon policy impact,
and rise modestly over time.

The changes in the UK are more dramatic, and it is still the low-skill self-employed
who lose the most. And despite the large loss in earnings, their employment share goes
up: This is due to low-skill workers switching into self-employment at high rates of
infection. Workers are forced to work by their managers, so earnings drop by less no
matter the rate of infection. But since they face higher rates of infection, workers value
the option to stay home more than their earnings, so switch toward self-employment,
as shown in Figure 7(b). And because so many workers switch to other jobs, their
relative wages go up in equilibrium, a form of compensating differential.

Thus, the rise in workers’ earnings in Figure 7(a) must be viewed with caution.
At high infection rates, workers would rather stay at home but are not given the
choice. And in our model, the only way for workers to avoid infection is to switch
jobs. Although we do not explicitly model unemployment, workers’ switch toward self-
employment would show up exactly as unemployment in the data. Those workers in
our model who switch their jobs to self-employment make close-to-zero earnings, which
can be viewed as unemployment benefits or other government subsidies that are issued
universally.

3.3 Counterfactual Policy Analysis

How effective were each country’s policies? While SK’s policy is deemed successful,
would it work for other countries as well? And could an early lock-down have contained
the outbreak better (or worse)? We address these questions by simulating the path of
infections and GDP if each country had implemented no policies, and then applying
the UK’s policies on SK and the other way around.

In Figure 8, we compare SK’s baseline policy against the hypothetical outcome had
it not done anything, and had it instead implemented UK’s lock-down policy, including
the exact dates of implementation. Without any intervention, the virus would have
spread more by as much as three orders of magnitude (the y-axis is in log-10 scale),
and GDP losses from the fear factor would have been as much as 30 percent. A UK
style lock-down results in a similar outcome as the UK.

UK’s lock-down is much less effective. In Figure 9, we compare UK’s baseline pol-
icy against the hypothetical outcome had it not done anything, and had it instead

13Moreover, despite the small magnitude both in the data and the model, the model-predicted employment
share changes by skill-occupation are qualitatively in line with the January to March changes (from the first
confirmed case to peak in SK) in the KLFS as well.
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Fig. 8: SK Counterfactual Policies
“Model” is SK’s baseline testing and tracking policy. “No policy” is doing nothing, and “Lockdown” is if
SK had followed UK’s policy exactly, including its lock-down date. Infection counts are cumulative and in
log-10 scale. GDP is in log-point deviations and not normalized per capita, so includes GDP losses from
COVID-19 deaths (the working-young has a zero natural death rate).

Jan 21 Mar 21 May 20 Jul 19 Sep 17 Nov 16
10 2

10 3

10 4

10 5

10 6

10 7

10 8

Model
No policy
Tracking
Early

(a) Infections

Jan 21 Mar 21 May 20 Jul 19 Sep 17 Nov 16
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Model
No policy
Tracking
Early

(b) Total GDP

Fig. 9: UK Counterfactual Policies
“Model” is UK’s baseline lock-down policy. “No policy” is doing nothing, and “Tracking” is if UK had
followed SK’s policy exactly, including its timing. “Early” is if UK had implemented the same lock-down,
but at the time of SK’s Shincheonji outbreak. Counts are cumulative and in log-10 scale. GDP is in log-point
changes and not normalized per capita, so includes GDP losses from COVID-19 deaths (the working-young
has a zero natural death rate).
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Fig. 10: UK Counterfactual Policies: Extended Lock-Down and Virus Visas
“Model” is UK’s baseline lock-down policy. “Short” is an earlier lifting of the lock-down. “Visa” is if UK
starts issuing antibody test-based virus visas once testing becomes available on June 20, 2020. Counts are
cumulative and in log-10 scale. GDP is in log-point deviations and not normalized per capita, so includes
GDP losses from COVID-19 deaths (the working-young has a zero natural death rate).

implemented SK’s testing and tracking policy, including the exact dates of implemen-
tation. Without any intervention, the virus would have spread nearly twice as much.
Moreover, the lock-down in the UK reduces peak infection compared to doing nothing,
preventing the impending 30 percent drop in GDP that would have been caused by
large masses of people staying home at peak infection (August). Nonetheless, if the
UK had implemented SK’s testing policy, the virus would have been contained at an
early stage, resulting in much fewer infections in the long-run, with only a modest drop
in GDP (four percent) compared to the 20 percent drop due to the lock-down.

But is it the policy itself or the early reaction (in February rather than March)
that leads to successful containment? To find out, we additionally simulate a path
in which the lock-down is implemented at the same time as when SK intensified its
testing. While an early lock-down is effective in preventing the spread of the virus
upon impact, its efficacy wears off over time, and is not enough to avoid high infections
in the long run. Consequently, infections eventually reach almost the level of the later
lock-down (“Model”), as well as similar losses in GDP by September.

As of early May, the UK government decided to extend its lock-down. What would
have happened if it had instead lifted the lock-down, surrendering to political pressure?
While some of the decay can be due to civil disobedience, it may also be due to
enforcement. So to simulate this effect, we increase the decay of its effectiveness,
which we build into the model in Equation 13. In Figure 10, we simulate the paths
of infections and GDP if the decay parameter, λ1, were equal to 0.02 rather than 0.01
(two percent decay per day).

A shorter lock-down raises infections in the summer, and can raise GDP by five
percent early on. But the shortening of the lock-down also hastens the fear factor to
take over, increasing GDP losses at peak by about 2 percentage points in the fall. Thus
the decision to extend the lockdown not only spreads out the infections, but also GDP
losses, over a longer time horizon.
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An alternative policy to an extended lock-down is a “selective lifting” of the lock-
down through the issuance of virus visas, considered by several European countries.
Such a policy would be backed by random testing (testing also the asymptomatic) as
well as antibody tests. For comparison, we simulate the infection and GDP paths of
the UK under a hypothetical scenario in which it starts large-scale testing and issuing
virus visas once antibody tests become universally available.

We assume that UK’s baseline lock-down policy continues until June 20, at which
point virus visas begin to be issued to all who have recovered from the virus. As shown
in Figure 10, widespread testing reduces GDP losses at the peak by 2 percentage points
by allowing all recovered to work, in addition to averting the GDP loss from the fear
factor.14 The fact that virus visas depend on antibody testing is crucial: Since more
than half of eventually infected are already recovered by June 20, without it, the visa
policy that can only vouch for the confirmed recovered has barely any effect.

3.4 Virus Visas and Inequality

GDP and earnings drops are always larger for the low-skilled, regardless of whether it
is due to policies or the fear factor. Since virus visas are effective in reducing GDP
losses, we now compare the benefits of the policy across different skill and occupation
groups in the UK.

Figure 11 shows the resulting changes in GDP by skill, utility, earnings, and em-
ployment changes by skill and occupation. Figure 11(a) is to be compared with Figure
5(b), and Figures 11(c) and 11(d) with Figure 7. Before June 20, the paths are exactly
same as in the baseline, since up to then agents are subject to the same lock-down
policy and individuals are not forward looking.

Just as the persistent drop in GDP was entirely driven by the low-skilled in Figure
5(b), Figure11(a) shows that the recovery from the virus visa is also entirely driven
by the low-skilled. The reason for this is two-fold. On the one hand, low-skill self-
employed earnings recover by more than 20 log points, as those who find out they have
already had the virus and recovered return to work, as shown in Figure 11(c). On
the other hand, low-skill workers, who experience the smallest change in earnings due
to being forced to work during the lock-down, no longer switch to self-employment to
avoid infection (where they have the choice to self-quarantine themselves), and even
those who previously switched return to being a worker, as shown in Figure 11(d).
As discussed in Section 3.2, workers who switch to self-employment to avoid the virus
in our model can be viewed as becoming unemployed. Thus, the recovery in worker
shares can be viewed as furloughed or laid-off workers returning to work once the fear
of infection is gone.

This latter effect is more obvious in Figure 11(b), which shows the utilities of each
skill-occupation group. There, it is clear that despite the low drop in earnings, it is the
workers—and especially low-skill workers—who experience the largest drop in utility
from being more exposed to the virus than other groups, as they do not have the
choice of staying home even at high infection rates. The rise in their utility following
virus visas cannot be due to earnings, which remain flat for the duration of the lock-
down. Thus, their rise in utility is entirely due to the removal of the fear factor, as

14Since the policy successfully contains the virus, although belatedly, we find that additional SK-style
tracking (Q = 1) does little to affect both the infection path and GDP.
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Fig. 11: UK Inequality using Hypothetical Virus-Visas
SE: Self-employed, Mgr: Managers, Wkr: Workers. GDP is in log-point changes and not normalized per
capita, so includes GDP losses from COVID-19 deaths (the working-young has a zero natural death rate).
Utilities are in per worker level changes. Earnings are in log-point changes in per worker earnings, and
employment shares in level changes.
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we assumed in (14). And as their utility begins to rise, they no longer switch jobs (or
become unemployed) and some of those who had left their jobs in the past, despite the
low earnings in self-employment (which can be viewed as low income in unemployment),
return.

In summary, to the extent that (i) low-skill workers and self-employed lose the
most in all scenarios, and (ii) the high-skill benefit less from virus visas, because by
now their earnings and employment have more or less recovered, our counterfactual
visa policy result scall for redistributive antibody testing should it become available—
disproportionately intense testing of the low-skilled. This not only helps those most in
need, but also has the largest effect in recovering aggregate GDP.

4 Conclusion

We presented a quantitative economic-epidemiological model of the COVID-19 epi-
demic to investigate how different containment policies affect inequality and aggregate
outcomes. Individuals choose whether to work from home or not, and when infection
rates are high, voluntarily choose to stay home out of fear of infection despite lower
earnings. We show that, contrary to common beliefs, containment policies mitigate
not only infections but also long-run GDP losses, because losses would become even
higher if the virus is not contained early and people start to self-quarantine themselves
en masse. We also show that South Korea’s testing and tracking policies are quan-
titatively much more effective at containing both the spread and GDP losses than a
lock-down, regardless of the timing. Finally, we show that low-wage self-employed and
workers suffer the most from the epidemic and a blanket lock-down, and stand most to
gain from virus visas based on antibody tests, raising the possibility that redistribu-
tive testing is not only economically equitable but also efficient, in the sense that it
would have a larger impact on raising aggregate GDP than randomly testing the same
number of people.

Several of our parameters are chosen ad hoc and only loosely calibrated. However,
as more data becomes available and allows us to use more informative numbers for
calibration, our model of heterogeneous skills and occupations with observable and
unobservable health status can serve as an ideal laboratory to assess how different
policies have affected and will affect economic and (COVID-related) health inequality
as we continue to battle the epidemic.
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1 Introduction

The outbreak of COVID-19 virus has caused major concerns about public health around

the world. Since the first cases in late 2019 in China, COVID-19 has spread exponen-

tially around the world, indicating an endemic person-to-person transmission.1 According

to statistics released by the World Health Organization (WHO), as of April 24 2020 there

were 2,626,321 reported cases of COVID-19, and the death toll was 181,938. Public health

o�cials and epidemiologists have urged governments to implement various degrees of social

distancing policies in an attempt to decrease the transmission rate by reducing the expo-

sure of uninfected individuals to the infected ones. In an attempt to reduce the population

contact rates and slow the transmission of the virus, many countries implemented a range

of non-pharmaceutical interventions (NPIs), including closures of schools, workplaces, public

transport, cancellations of public events, restrictions of internal movement, tracing infected

persons contacts, enhanced testing, and more. Timelines of these policies vary across coun-

tries, but by mid-April 2020, due to the virus crisis around 70% of countries have enacted one

or more of these measures.2 The e↵ectiveness of each NPI may vary with a range of other

actions taken by the government and communities at the time of the crisis. To assess these

di↵erences, we examine how the e↵ectiveness of NPIs varies with country characteristics.

Using the Susceptible-Infected-Recovered (SIR) model, we examine how the impact of

NPIs on transmission rate of COVID-19 varies with a range of country characteristics along

economic, public health and geographic dimensions. These characteristics are associated with

di↵erences in behavioral response and di↵erences in resources available to governments that

might be required to enforce these policies. Our findings suggests that these factors play

important roles in slowing down the spread of the virus during NPIs; the results also suggest

that the economic and social systems as well as incentives and attitudes may lead to di↵erent

outcomes of NPIs.

We account for four factors that may a↵ect the spread of the virus when NPIs are enacted.

1See for example, Ghinai, et al. (2020), documenting the first known cases of person-to-person transmission of
COVID-19.

2Authors calculations, using the Oxford COVID-19 Government Response Tracker dataset.
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First, population density may a↵ect the compliance with the social distancing rules. Higher

density may increase the chances of human interactions and hence the spread of the virus

and therefore make the lockdown policies less e�cient than in places with low population

density. It has also been previously established that an epidemic of a respiratory disease,

such as influenza, initially a↵ects the more densely populated urban areas (see for example,

Zachreson et al., 2018). However, it is not clear whether the impact of non-pharmaceutical

interventions varies with population density.

Second, some populations may have higher or lower incentives to comply with government

policies. From the risk perspective, it was shown that deaths from COVID-19-related illness

are heavily concentrated among the elderly and those with underlying health conditions (see

for example, Wu and McGoogan 2020; Verity et al. 2020; CDC COVID-19 Response Team

2020). The di↵erences in risk to be severely a↵ected by the virus may imply higher compliance

within some groups. Moreover, individuals in countries with better access to high quality

health care might have lower incentives to comply with the enacted policies.

Third, lower access to leave and sick benefits may increase the incentives to work for those

who already display symptoms and promote the spread of the virus. For example, Barmby

and Larguem (2009) and Pichler and Ziebarth (2017) show that paid sick leave to keep

contagious workers at home can mitigate the prevalence of disease transmissions. Moreover,

higher employment rates may increase the risk of exposure to viruses and therefore increase

the spread. For example, Markowitz et al. (2019) show that increases in employment are

associated with increased incidence of influenza; Adda (2016) shows that viruses spread faster

during economic booms.

Forth, government resources and favorable economic conditions prior to the pandemic

have the potential to improve compliance, either through higher benefits for those on sick

leave, or through increased supervision and surveillance, since patrolling and enforcing such

policies may require substantial public resources.

The dataset is constructed using three data sources. The Oxford COVID-19 Government

Response Tracker (OxCGRT), collected from publicly available sources, provides a systematic

cross-national, cross-temporal measures of government responses to COVID-19 spread. For
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more details about the dataset, see Hale, Petherick, Phillips and Webster (2020). We obtain

data on the number of recorded COVID-19 cases from the Center for Systems Science and

Engineering at Johns Hopkins University. Country-level characteristics are from the World

Bank data.

We show that the transmission rate is decreasing with population density, surface area

of the country, air pollution, employment rate, and the proportion of elderly population;

the transmission rate is increasing with the proportion of physicians in population. We test

whether these channels may explain the di↵erences in flattening the spread of COVID-19

when NPIs are enacted. Di↵erent NPIs may be more or less e↵ective in di↵erent environ-

ments. NPIs that imply closures, such as school and workplace closures, are more e↵ective

in countries with lower population density, lower surface area, lower air pollution, higher

unemployment rate, higher health expenditure, and lower proportion of elderly population.

On the other hand, extensive testing for COVID-19 NPI is more e↵ective in countries with

lower GDP per capita, higher population density, larger surface area, higher air pollution,

higher employment rate, lower health expenditure, lower ratio of physicians in population,

and higher proportion of elderly in population.

The findings can be explained by incentives driven behaviors and public resource con-

straints. Compliance with closures may demand more resources in places with higher pop-

ulation density, larger geographical area, and higher employment rate, impairing the ef-

fectiveness of these policies. Communities with access to better health care, measured by

the number of physicians and health expenditure as % of GDP, ceteris paribus, may have

less incentives to voluntary reduce social interactions; therefore, lockdown measures in such

communities could be more e↵ective.

There are now a number of studies evaluating the e↵ectiveness of NPIs. Kucharski, et al.

(2020) estimate that in China, the basic reproduction rate declines from 2.35 one week before

travel restrictions to 1.05 one week after travel restrictions. Friedson, McNichols, Sabia and

Dave (2020), using daily COVID-19 data in California, find that the lockdown reduced the

number of cases by 125.5 to 219.7 (per 100,000 population) and led to 1,661 fewer deaths

during the first month following its implementation. Fang, Wang and Yang (2020) study
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the impact of lockdown in Wuhan, China enacted on January 23, 2020; they show that the

COVID-19 cases would be 64.8% higher in the 347 Chinese cities outside Hubei province,

and 52.64% higher in the 16 non-Wuhan cities inside Hubei, in the counterfactual world in

which the city of Wuhan were not locked down. Chen and Qiu (2020) show that some NPIs

are more e↵ective than others in terms of both costs and benefits. Hartl, Walde and Weber

(2020) study the e↵ects of schools lockdown policy in Germany and show a trend break in

the transmission rate on the 9th day of the policy being in place.

A number of studies examine the socio-economic inequalities associated with the COVID

crisis along several dimensions. Ahmed, Ahmed, Pissarides, and Stiglitz (2020) show that

addressing inequality could be important in mitigating the spread of the virus. Borjas (2020)

shows that more disadvantaged populations are less likely to be tested but more likely to

be infected conditional on testing. Brzezinski, Deiana, Kecht and Van Dijcke (2020) show

that the more disadvantaged communities tend to have lower uptake of voluntary physical

distancing in response to the outbreak of the crisis. Earlier epidemiology literature shows that

there is considerable variation in individual infectiousness, model predictions that control for

individual variation di↵er sharply from average-based approaches, with disease extinction

more likely and outbreaks more rare but more explosive; suggesting that targeted control

policies are more e↵ective than general policies (see for example, Lloyd-Smith et al., 2005).

Our results complement this literature showing that there is a substantial heterogeneity in

the e↵ectiveness of government response policies. This heterogeneity can be attributed to

endogenous social distancing behavior; and di↵erences in resources devoted to the policy.

The paper proceeds as follows. Section 2 describes the data. Section 3 reports estimation

results. We show how transmission rate varies with country-specific characteristics and the

relationships between these characteristics and the e↵ectiveness of NPIs. Section 4 provides

a discussion of the findings and concludes.
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2 Data

The dataset combines daily government response data, daily reported COVID-19 cases data,

and country-level aggregate characteristics.

Government response policies data are from the Oxford COVID-19 Government Response

Tracker (OxCGRT), which provides an extensive set of measures.3 OxCGRT collects data of

cross-national, cross-temporal measures starting January 2020. Hale, Petherick, Phillips and

Webster (2020) provide an extensive description of data collection. The OxCGRT collects

information on a range of government responses to the COVID-19 crisis. We focus on the

following NPIs, closures of schools and universities, closures of workplaces, cancellations of

public events, closures of public transport, restrictions in internal movements (these may

include isolation of those infected and/or restrictions on movements across cities), restric-

tions on international travel, government information campaigns, contact tracing of infected

persons and extended testing (for example, testing of persons who meet specific criteria vs.

open public testing).4 Some countries implement the closures and restrictions as a recom-

mended measure and some as a required measure. In some countries these measures are

targeted while in others they are general. We assume that targeted policies are implemented

in areas with large clusters of COVID-19 and therefore these are the relevant measures for

our analysis. We do not distinguish between recommended and required measures, based on

the assumption that public follows the recommended measures as if these were required.5

We model the impacts of these nine policies using the SIR framework (as described in the

next Section). The OxCGRT also reports the COVID-19 Government Response Stringency

Index, calculated using seven NPIs excluding contact tracing and extended testing). The

value of the index on any given day is the average of the seven indicators for each policy.

Each NPI receives a score between 0 and 3 (or 0 and 2), where zero implies no policy or

3The data is available at https://covidtracker.bsg.ox.ac.uk.
4Workplace closures may vary across countries and may include closures of cafes and restaurants, retail, beauty

and personal care services, entertainment venues, leisure and recreation, residential facilities, outdoor recreation,
non-residential institutions (such as libraries and museums and places of worship).

5One example of a country with recommended school closures is Australia. Based on numbers reported in the
Australian media, only 15% of school age children in relevant locations were attending schools once the measure
was announced.
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missing information, 1 implies targeted policy and 2 or 3 implies more general policy. The

index is rescaled to create a score between 0 and 100.

There are 201 countries and territories in the dataset, 178 of which have reported at least

one case of COVID-19 by April 15 2020, out of which 139 have implemented at least one

of the nine listed policies. Appendix Table 1 summarizes government response policies and

their average dates as reported in the OxCGRT data. Government information campaigns

are the first policies that were enacted on the onset of the crisis (the average timing was 24

February 2020), followed by restrictions in internal movements, contact tracing and interna-

tional travel restrictions. The more extensive closures followed about a week later, include

public events cancellations, school closures, extensive testing, workplace closures and public

transport closures. According to the OxCGRT, most popular policy among governments was

school closures (135), cancellations of public events (134) and internal movement restrictions

(133). The least popular policy is contact tracing of infected individuals (59 countries).

The number of cases of COVID-19 is provided by Center for Systems Science and En-

gineering (CSSE) at Johns Hopkins University. The cumulative number of confirmed cases

and deaths can be downloaded from the GitHub repository.6 The time series starts on 22

January, 2020 and is updated daily, the analysis includes data between 22 January and 24

April. Using these data and following the SIR model, we calculate the transmission rate of

COVID-19. Since the accounting of positive cases may vary substantially across countries

due to di↵erent testing and reporting practices, most estimations control for country fixed

e↵ects.

A significant amount of e↵ort has been put into creating the OxCGRT and CSSE datasets.

However, data could not be collected for every day for each country. There are also di↵erences

in how COVID-19 cases are tested and reported across countries. For a number of countries

response policies such as schools and workplace closures are reported as initiated on the same

day as the first reported case. We assume that these reportings are due to a measurement

errors and include only those countries which had at least 20 reported cases on the day of

6The data are available at:
https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/csse covid 19 time series.
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the school closures policy implementation. This restriction leaves us with 55 countries.

The third data source is the World Bank Databank, which provides a range of aggregate

measures on health, geography and the state of economy.7 We use the most recent available

measures. For aggregate health measures we use PPP health expenditure (2017), number

of physicians per 1000 population (2008-2017 average), and proportion of population above

65 years old (2017). The economic indicators are GDP per capita (2017, in constant $US)

and employment rate (2017). Geographic and environmental indicators are log of surface

area in sq. km (2013-2017 average), population density (2017), and air pollution measured

by PM2.5 (mg per cubic meter) (2017). Data are not available for every variable for each

country. Our final sample that combines all three data sources includes 53 countries when

including countries with at least 20 cases on the first day of school closures policy initiation.

Appendix Table 2 provides summary statistics for the selected 53 countries.

3 Estimation

To assess the e↵ectiveness of NPIs we use the Susceptible-Infected-Recovered (SIR) model

with time-varying parameters. This type of model is used to analyze how infectious diseases

are spread (see for example, Kermack, McKendrick and Walker 1927, and a recent application

of this model in Toda, 2020). The SIR-type model assumes exponential growth dynamics in

the cumulative number of cases in the absence of policy interventions.

We utilize the dynamic version of the SIR model, as in Chen and Qiu (2020), who augment

this model to test for the e↵ectiveness of various NPIs across nine countries. We apply their

methodology in our analysis.

The time-varying SIR model is described by the following system of ordinary di↵erential

equations,

7The data are available at https://data.worldbank.org
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@Sj

@t
= ��j(t)Sj(t)

Nj
Ij(t)

@Ij
@t

=
�j(t)Sj(t)

Nj
I(t)� �j(t)Ij(t) (1)

@Rj

@t
= �j(t)Ij(t)

The model assumes that the population, Nj , in country j is divided into three groups:

susceptible, Sj(t); infected, Ij(t), and recovered, Rj(t). Population size is assumed to be

constant since we focus on a relatively short time period. The country-specific time varying

parameter �j(t) represents the transmission rate of the virus in country j. The Ij(t) infected

individuals can transmit the disease with probability Sj(t)
Nj

. Infected individuals recover at

rate �j(t).

In the classical SIR model, the reproduction rate, Rj(t) = �j(t)/�j(t), determines the

number of additional infections by an infected person before he/she recovers. If Rj(t) > 1,

the disease will spread exponentially and will infect a large fraction of the total population.

In the dynamic SIR model, the reproduction rate, Rj(t), can change over time. We assume a

constant �, therefore, by observing the change in �j(t) over time, we examine the e↵ectiveness

of NPI policies given varying country characteristics.

The change in the number of infected in country j is derived as follows:

Ij(t+ 1)� Ij(t) =
�j(t)Sj(t)

Nj
I(t)� �j(t)Ij(t) (2)

Solving for �j(t), leads to the following equation,

�j(t) =
Ij(t+ 1)� Ij(t)

Ij(t)

Nj

Sj(t)
+ �j(t)

Nj

Sj(t)
(3)

We approximate and assume that for a large N , S(t)/N ⇡ 1. We assume that the recovery

rate, �j(t), is constant across time and countries, we set � = 1/18 (following findings in

Atkeson (2020) and consistent with the fraction of infected that recovered or died according

to the WHO as compiled in JHU CCSE).
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Following Chen and Qiu (2020), in the dynamic SIR model, the impacts of k NPIs in

country j are measured as follows,

�j(t) = exp(↵j +
KX

k=1

�jkNPIjtk) (4)

where ↵j is a country fixed e↵ect and

NPIj,t,k =

8
>><

>>:

1 if t < t⇤

exp(� (t�t⇤)
⌧ ) if t � t⇤

(5)

where t⇤ represents the time when the NPIk was enacted. The parameter ⌧ controls for

the time-lag e↵ect of interventions. We assume ⌧ = 8, which reflects findings on COVID-19

incubation period in previous studies.8

Allowing the impacts of NPIs to vary with country-specific characteristics, the empirical

specification of equation (4) takes the following form,

log �jt = ↵0j +
KX

k=1

↵1kNPIjtk +
KX

k=1

↵2kZjNPIjtk + ✏jt, (6)

where vector Zj includes a range of country specific characteristics, including aggregate

health variables: health spending as a % of GDP, number of physicians per 1000 people, and

the proportion of population above 65 years old in total population; economic indicators:

log GDP per capita in constant $ US and ratio of employed in population; geographic and

environmental indicators: log of surface area, population density (people per sq. km of land

area), and air pollution measured by concentration of PM2.5. Measurement error in the data

is denoted by ✏jt.

We first estimate how the transmission rate varies with country characteristics before

8For example, Lauer et al. (2020) and Linton et al. (2020) that find that incubation period of COVID-19 is 5.2
days on average; Li at al. (2020) reports 4.1 to 7.0 days; and Wu, Leung and Leung (2020) find this period to be
6.1 days. Combining the length of the incubation period with feeling symptoms, being tested and results reported,
we set the time-lag e↵ect of interventions at 8 days.
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most NPIs were enacted,9

log �jt = �0 + Zj�1 + ujt. (7)

Table 1 reports the results. The transmission rate varies with country characteristics. It

is decreasing with population density, surface area, air pollution, employment rate and the

proportion of population above 65 years old; higher proportion of physicians is positively

correlated with the transmission rate.

Table 1: COVID-19 transmission rate and country characteristics, OLS, selected

countries

(1) (2) (3) (4) (5)

ln GDP per capita -0.1194*** -0.1474*** -0.1117** -0.0058 -0.069
(0.0396) (0.0556) (0.0548) (0.0735) (0.0907)

Pop density -0.1288*** -0.1399*** -0.1204*** -0.0879**
(0.0411) (0.0403) (0.0412) (0.0448)

ln surface area -0.0886*** -0.0962*** -0.0698** -0.0742***
(0.0255) (0.0250) (0.0278) (0.0279)

PM2.5 -0.0038 -0.0053* -0.0063** -0.0082**
(0.0029) (0.0029) (0.0029) (0.0035)

Employment rate -0.0210*** -0.0273*** -0.0263***
(0.0041) (0.0050) (0.0064)

Health expend, % GDP -0.0397** -0.0264
(0.0184) (0.0197)

Physicians 0.0932*
(0.0501)

% 65 yo + -0.0176*
(0.0104)

const 0.5428 2.2345*** 3.2386*** 2.5050*** 3.0459***
(0.4028) (0.6944) (0.7068) (0.7826) (0.8191)

N 597 597 597 597 597
R2 adj. 0.015 0.04 0.082 0.089 0.096
Note: The subset of selected countries includes those with number of infected>19 when school
or workplace closures are enacted, 53 countries. Observation period is between seven days
after observing the first case and before the closures of schools and workplaces. Coe�cients
presented, standard errors in parenthesis. Statistical significance is denoted as *10%, **5%,
and ***1% levels.

We estimate the e↵ects of NPIs on transmission rate, as specified in equation (6). We

first estimate equation (6) without country-specific controls, controlling for the country fixed

e↵ects. Column (1) in Table 2 reports the results. Positive coe�cients imply that a given

policy had a positive e↵ect on reducing the transmission rate. It should be noted, that in

most countries most of the NPIs in our dataset were enacted with very little spacing in

9These period may cover times when government information campaigns, contact tracing of infected, and some
restrictions on international travel were in place. See Appendix Table 1 for average timings of various NPIs.
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between. Appendix Table 1 shows that, on average, policies follow each other very tightly.

This presents an identification challenge. Table 2 shows that we cannot identify the e↵ects of

every NPI when all of them are included in the regression. Thus, first, we combine school and

workplace closures into one category (the correlation between these two NPIs is 0.87); second,

we exclude NPIs which are highly correlated with the school and workplaces closures variables

(correlation of 0.7 and above). This leaves the estimation with three NPIs, the combined

school and workplace closures variable, contact tracing and expanded testing. Column (2) in

Table 2 reports estimation results when using the subset of NPIs. The coe�cient of contact

tracing on transmission rate remains negative, therefore the final subset of NPIs includes the

combined schools and workplaces closures and the extensive testing variables. The results

using the two remaining NPIs are reported in column (3) of Table 2.

Table 2: Estimated NPI impact on COVID-19 transmission rate, fixed e↵ects

Selected countries, n=53 All countries, n=132
(1) (2) (3) (4) (5) (6)

School closures (SC) 0.3070*** 0.1720**
(0.1061) (0.0851)

Workplace closures (WC) 0.3609*** 0.4578***
(0.0919) (0.0665)

Movement restrictions 0.2229** 0.2093***
(0.0955) (0.0779)

Public events cancellations -0.7067*** -0.6690***
(0.0969) (0.0820)

Public transport closures 0.5654*** 0.4909***
(0.0619) (0.0508)

Gov information campaign -0.5346*** -0.2957***
(0.0746) (0.0637)

Contact tracing -0.2848*** -0.2175*** -0.2770*** -0.2205***
(0.0771) (0.0791) (0.0605) (0.0616)

International travel restrictions 0.3065*** 0.1914**
(0.0972) (0.0774)

Extensive testing (ET) 0.2470*** 0.4018*** 0.3623*** 0.2879*** 0.4095*** 0.3711***
(0.0647) (0.0656) (0.0641) (0.0551) (0.0548) (0.0538)

School/work closures 0.2896*** 0.2498*** 0.3054*** 0.2590***
combined (SWC) (0.0437) (0.0412) (0.0375) (0.0353)

N 3534 3534 3534 7261 7261 7261
Note: Selected countries include countries with number of infected>19 when school or workplace closures are
enacted. Coe�cients presented, standard errors in parenthesis. Statistical significance is denoted as *10%, **5%,
and ***1% levels.

Tables 3 and 4 report estimation results of equation (6) with country-specific controls

using the subset of NPIs, combined schools and workplaces closures and the extensive testing
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variables. All estimations control for the country fixed e↵ects. In Table 3 we introduce aggre-

gate controls separately; in Table 4 aggregate controls are added simultaneously. Extensive

testing (ET) is more e↵ective in countries with lower GDP per capita, higher population

density, higher air pollution, higher employment, lower health expenditure (as % of GDP),

higher proportion of physicians in population and higher proportion of older population (65

plus). On the other hand, the schools and workplace closures policy is more e↵ective in

countries with lower population density, smaller surface area, lower pollution, higher health

expenditure and lower proportion of older population.

Table 3: Estimated NPI impact on COVID-19 transmission rate with country characteristics interactions,

fixed e↵ects, selected countries, N=3534

ln GDP Pop density ln area PM2.5 Empl. Health Physicians % 65+ yo
per capita (people (sq. km) air poll. to pop. expend., per 1000 in pop.

($US) per km2) (mg/m3) ratio % GDP people
(1) (2) (3) (4) (5) (6) (7) (8) (9)

ET 0.3623*** 2.3782*** 0.3187*** 0.3062 0.1562 -0.5748 1.4281*** 0.0725 0.1873
(0.0641) (0.7322) (0.0670) (0.3534) (0.0992) (0.3913) (0.1742) (0.1557) (0.1520)

SWC 0.2498*** -0.9482** 0.2810*** 1.6473*** 0.3082*** 0.7416*** -0.2500** 0.028 0.1740*
(0.0412) (0.4302) (0.0427) (0.2680) (0.0623) (0.2442) (0.1192) (0.1054) (0.0918)

ET * -0.2021*** 0.0138** 0.004 0.0092*** 0.0160** -0.1365*** 0.1083** 0.0122
(0.0730) (0.0067) (0.0274) (0.0034) (0.0066) (0.0207) (0.0536) (0.0099)

SWC * 0.1200*** -0.0112*** -0.1095*** -0.0024 -0.0084** 0.0671*** 0.0832** 0.0053
(0.0428) (0.0043) (0.0208) (0.0021) (0.0041) (0.0147) (0.0367) (0.0060)

R2 0.042 0.045 0.045 0.054 0.044 0.044 0.054 0.048 0.043

Note: Subset of countries includes those with number of infected>19 when school or workplace closures are enacted, 53
countries. ET denotes extensive testing NPI; SWC denotes schools and/or workplaces closures NPI. “ET * ” and “SWC
* ” indicate interactions of NPIs with the country characteristics as specified in the heading each column. Coe�cients
presented, standard errors in parenthesis. Statistical significance is denoted as *10%, **5%, and ***1% levels.

We test for robustness of the finding using an alternative measure of government response.

The OxCGRT data provides a Government Response Stringency Index (Stringency Index,

SI), the index ranges from 0 to 100 and each additional government response leads to a higher

index value. Hale, Petherick, Phillips and Webster (2020) provide an extensive description of

how this index is constructed and how it varies across time and countries. We estimate how

the relationship between SI and transmission rate varies with country-specific characteristics

using the following specification,

log �jt = �0 + �1SIjt + Zj�2SIjt + "jt. (8)
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Table 4: Estimated NPI impact on COVID-19 transmission rate, with country characteristics

interactions, fixed e↵ects, selected countries, N=3534

(1) (2) (3) (4) (5) (6)
ET 0.3623*** 2.3782*** 0.1814 0.061 -1.5558 -0.2339

(0.0641) (0.7322) (1.0855) (1.0839) (1.2243) (1.2527)
SWC 0.2498*** -0.9482** 2.8001*** 2.9250*** 3.6446*** 3.9805***

(0.0412) (0.4302) (0.7912) (0.7903) (0.8203) (0.8527)
ET * ln GDP per capita -0.2021*** -0.0787 -0.1922** 0.1317 -0.4483***

(0.0730) (0.0840) (0.0901) (0.1298) (0.1553)
SWC * ln GDP per capita 0.1200*** -0.0149 0.0725 -0.1443* -0.0501

(0.0428) (0.0543) (0.0592) (0.0860) (0.0990)
ET * Pop density 0.0145* 0.0134* 0.0104 0.0255***

(0.0076) (0.0076) (0.0077) (0.0080)
SWC * Pop density -0.0285*** -0.0281*** -0.0247*** -0.0271***

(0.0048) (0.0048) (0.0049) (0.0049)
ET * ln surface area 0.0576* 0.054 0.1027*** 0.1013**

(0.0333) (0.0335) (0.0379) (0.0398)
SWC * ln surface area -0.1760*** -0.1800*** -0.2011*** -0.2196***

(0.0263) (0.0263) (0.0273) (0.0274)
ET * PM2.5 0.0080** 0.0024 -0.0022 0.0161***

(0.0038) (0.0043) (0.0046) (0.0051)
SWC * PM2.5 -0.0035 -0.0009 0.002 -0.0046

(0.0025) (0.0026) (0.0027) (0.0029)
ET * Employment rate 0.0244*** 0.0071 0.0363***

(0.0077) (0.0090) (0.0100)
SWC * Employment rate -0.0172*** -0.0019 -0.0104

(0.0046) (0.0064) (0.0068)
ET * Health expenditure, % GDP -0.1438*** -0.1164***

(0.0411) (0.0435)
SWC * Health expenditure, % GDP 0.0988*** 0.1392***

(0.0284) (0.0306)
ET * Physicians per 1000 people 0.2444***

(0.0944)
SWC * Physicians per 1000 people 0.0117

(0.0552)
ET * % 65 yo + 0.1033***

(0.0202)
SWC * % 65 yo + -0.0525***

(0.0105)

R2 0.042 0.045 0.066 0.07 0.074 0.095
Note: The subset of selected countries includes those with number of infected>19 when school or workplace
closures are enacted, 53 countries. ET denotes extensive testing NPI; SWC denotes schools and workplaces
closures NPI. Coe�cients presented, standard errors in parenthesis. Statistical significance is denoted as *10%,
**5%, and ***1% levels.
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Table 5 reports the results. Column (1) shows that there is a negative correlation between

SI and COVID-19 transmission rate, more stringent policy response leads to a reduction in

transmission rate. Columns (2)-(6) gradually introduce aggregate country-specific controls.

The e↵ectiveness of government policies, summarized by the SI, shows similar patterns as the

e↵ectiveness of schools and workplace closures. The e↵ectiveness of policies is declining with

GDP per capita, population density and surface area; and increasing with health expenditure

and proportion of physicians in population.

Table 5: Estimated impact government response on COVID-19 transmission rate, with country

characteristics interactions, fixed e↵ects, selected countries, N=3522

(1) (2) (3) (4) (5) (6)
SI -0.0067*** 0.0032 -0.0356*** -0.0357*** -0.0481*** -0.0558***

(0.0004) (0.0043) (0.0077) (0.0077) (0.0082) (0.0087)
SI * ln GDP per capita -0.0010** 0.0008 0.0002 0.0024*** 0.0036***

(0.0004) (0.0006) (0.0006) (0.0008) (0.0009)
SI * Pop density 0.0003*** 0.0003*** 0.0003*** 0.0002***

(0.0001) (0.0001) (0.0001) (0.0001)
SI * ln surface area 0.0015*** 0.0015*** 0.0020*** 0.0020***

(0.0002) (0.0002) (0.0003) (0.0003)
SI * PM2.5 0.0001*** 0.0001*** 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000)
SI * Employment rate 0.0001** 0.0000 0.0000

(0.0000) (0.0001) (0.0001)
SI * Health expenditure, -0.0010*** -0.0011***
% GDP (0.0002) (0.0003)
SI * Physicians -0.0018***
per 1000 people (0.0006)
SI * % 65 yo + 0.0002

(0.0001)

R2 0.069 0.07 0.082 0.083 0.087 0.089
Note: The subset of selected countries includes those with number of infected>19 when school or workplace
closures are enacted, 53 countries. SI denotes the OxCGRT data provides a Government Response Stringency
Index. Coe�cients presented, standard errors in paranthesis. Statistical significance is denoted as *10%, **5%,
and ***1% levels.

We further test for the robustness of the findings by reducing the assumption that the

impact of the stringency index is linear. We construct a set of 5 dummy variables to allow

for a nonlinearity in the e↵ect of the stringency of government response. The lowest group

indicates no response (i.e., SI = 0), the remaining groups indicate wether the index in the

first, second, third or fourth quartile.
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�jt =�0 + �1

5X

s=1

Ijst + Zj�2

5X

s=1

Ijst + ⇣ct. (9)

Results in Appendix Table 3 show similar patterns to those in Tables 4 and 5. How-

ever, the impact of policies is more pronounced when stringency index reaches 75%, i.e.,

when the final measures or government response, such as closures of schools and workplaces,

are initiated. The e↵ectiveness of policies is declining with GDP per capita, surface area;

and increasing with employment rate, health expenditure and proportion of physicians in

population.

4 Discussion and conclusion

Governments around the world have responded to the COVID-19 crisis with a range of NPIs

aiming to flatten the spread of the virus, relieve the pressure on hospital systems, and save

lives. These policies constrain social interactions, minimize arrivals of infected individuals

from overseas as well as establish practices of testing and tracing infected individuals. Recent

studies show that such policies are e↵ective in reducing the spread of the virus. However, it is

not determined whether the same combination of NPIs is optimal for each country, or whether

country specific characteristics should dictate which policies should be implemented or how

they should be implemented. This paper aims to fill this gap by studying the interactions

between the e↵ectiveness of NPIs at a country-level and country-specific characteristics.

We embed NPIs in a dynamic epidemiological SIR model and show empirically how

the e↵ectiveness of NPIs varies with country-specific characteristics. The e↵ectiveness of

lockdown policies is declining with GDP per capita, population density and surface area;

and increasing with health expenditure and proportion of physicians in population.

The findings can be explained by incentives driven behaviors and public resource con-

straints. Higher population density, larger geographical area, and higher employment rate

may demand more resources from the government to promote compliance. On the other
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hand, access to better public health system may slow down voluntary social distancing due

to decreased risks and lockdown policies are more e↵ective in flattening the spread of the

virus in such communities. The latter explanation is also consistent with the lower e↵ective-

ness of policies in communities with higher proportion of elderly, who are in higher risk group

in terms of becoming severely ill if infected and therefore have more incentive to voluntary

observe social distancing.

Our results complement earlier epidemiological research which shows a substantial degree

of heterogeneity in individual infectiousness rates in epidemics. This analysis also comple-

ments recent literature on socio-economic inequalities associated with the COVID-19 crisis.

Our findings emphasize that the e↵ectiveness of a given NPI policy varies with the socio-

economic and geographic characteristics of a given community and highlight that targeted

policies may improve the outcomes of government response policies.
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Appendix Table 1: Summary of available NPIs

Number of countries
with given NPI

Average starting date

Gov information campaign 132 24-Feb-20
Movement restrictions 133 26-Feb-20
Contact tracing 59 4-Mar-20
International travel restrictions 132 5-Mar-20
Public events cancellations 134 11-Mar-20
School closures 135 13-Mar-20
Extensive testing 68 14-Mar-20
Workplace closures 121 18-Mar-20
Public transport closures 97 22-Mar-20
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Appendix Table 2: Selected countries, summary statistics
Total Pop PM2.5 air ln

cases as ln GDP density, surface pollution Empl. to Health Physicians % 65 yo.
of per capita (people per area (mg per pop. expend., per 1000 + in

15/04/20 ($US) sq. km) (sq. km) m3) ratio % GDP people pop.
Algeria 2160 8.47 0.18 14.68 38.88 36.91 6.65 1.52 6.10
Argentina 2443 9.21 0.16 14.84 13.31 54.10 7.55 3.69 10.92
Australia 6440 10.95 0.03 15.86 8.55 62.15 9.25 3.41 15.26
Austria 14336 10.82 1.07 11.34 12.48 58.39 10.44 4.94 18.93
Bahrain 1671 9.97 20.17 6.65 70.82 70.93 4.87 0.95 2.37
Belgium 33573 10.76 3.77 10.33 12.89 50.96 10.04 3.01 18.47
Brazil 28320 9.31 0.25 15.96 12.71 54.57 11.77 1.96 8.46
Canada 28208 10.85 0.04 16.12 6.43 61.60 10.53 2.44 16.65
Chile 8273 9.62 0.25 13.54 21.04 55.51 8.53 1.08 11.05
China 83356 8.96 1.48 16.07 52.66 67.66 4.98 1.60 10.10
Colombia 3105 8.95 0.45 13.95 16.53 62.16 5.91 1.83 8.08
Costa Rica 626 9.20 0.98 10.84 15.73 54.43 7.56 1.15 9.11
Croatia 1741 9.67 0.73 10.94 17.90 46.87 7.18 2.97 19.83
Czechia 6216 10.06 1.38 11.28 16.07 59.20 7.15 3.76 18.73
Denmark 6681 11.06 1.38 10.67 10.03 59.38 10.35 3.75 19.49
Egypt 2505 7.97 0.99 13.82 87.00 39.73 4.64 1.21 5.17
Estonia 1400 9.90 0.30 10.72 6.73 60.38 6.68 3.33 19.20
Finland 3237 10.79 0.18 12.73 5.86 55.07 9.49 3.20 21.01
France 133470 10.68 1.22 13.22 11.81 50.74 11.54 3.20 19.47
Germany 134753 10.77 2.37 12.79 12.03 59.21 11.14 3.99 21.34
Greece 2192 10.07 0.83 11.79 16.22 41.88 8.45 5.83 21.25
Iceland 1727 10.86 0.04 11.54 6.48 79.63 8.29 3.67 14.25
Indonesia 5136 8.36 1.48 14.46 16.50 64.66 3.12 0.28 5.61
Iran 76389 8.85 0.50 14.37 38.98 39.14 8.10 1.17 5.99
Ireland 12547 11.25 0.70 11.16 8.21 58.60 7.38 2.79 13.33
Israel 12501 10.46 4.11 10.00 21.38 61.37 7.31 3.30 11.60
Italy 165155 10.48 2.05 12.62 16.75 44.62 8.94 3.97 22.36
Japan 8100 10.80 3.47 12.84 11.70 60.03 10.93 2.32 26.82
Kuwait 1405 10.41 2.32 9.79 60.75 72.24 3.90 2.49 2.32
Luxembourg 3373 11.61 2.50 7.86 10.36 56.54 6.16 2.85 14.08
Malaysia 5072 9.40 0.96 12.71 16.04 66.37 3.80 1.32 6.32
Mexico 5399 9.25 0.65 14.49 20.92 57.60 5.47 2.14 6.97
Morocco 2024 8.12 0.81 13.01 32.59 42.22 5.84 0.65 6.67
Netherlands 28153 10.92 5.11 10.63 12.03 61.82 10.36 3.29 18.57
New Zealand 1386 10.55 0.19 12.50 5.96 67.69 9.22 2.79 15.16
Norway 6740 11.43 0.15 13.21 6.96 61.68 10.50 4.35 16.70
Oman 910 9.67 0.16 12.64 41.12 66.59 4.29 2.04 2.33
Philippines 5453 8.01 3.58 12.61 18.07 57.60 4.39 1.28 4.86
Poland 7582 9.72 1.24 12.65 20.88 54.17 6.52 2.26 16.63
Portugal 18091 10.09 1.12 11.43 8.16 54.98 9.08 3.97 21.36
Qatar 3711 11.06 2.40 9.36 91.19 87.95 3.08 2.12 1.18
Romania 7216 9.35 0.85 12.38 14.61 52.68 4.98 2.50 17.65
Russia 24490 9.37 0.09 16.65 16.16 59.82 5.27 3.83 14.09
Serbia 4873 8.84 0.80 11.39 24.73 47.55 9.14 2.59 17.66
Singapore 3699 10.97 79.53 6.58 19.08 65.08 4.47 1.93 10.21
Slovenia 1248 10.19 1.03 9.93 16.02 55.81 8.47 2.66 18.78
South Africa 2506 8.91 0.48 14.01 25.10 40.32 8.11 0.77 5.17
Spain 177644 10.40 0.94 13.13 9.70 49.08 8.97 3.84 19.02
Switzerland 26336 11.28 2.16 10.63 10.30 65.26 12.25 4.01 18.32
Thailand 2643 8.76 1.36 13.15 26.26 67.28 3.71 0.53 11.24
UAE 5365 10.62 1.36 11.33 40.92 79.20 3.52 1.84 1.01
UK 98476 10.68 2.75 12.40 10.47 60.56 9.76 2.75 18.20
USA 636350 10.91 0.36 16.10 7.41 60.42 17.07 2.53 15.23
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Appendix Table 3: Estimated impact government response on COVID-19 transmission rate,
with country characteristics interactions, fixed e↵ects, selected countries, N=3381

(1) (2) (3) (4) (5) (6)
SI <25% 0.1801*** -0.431 1.4239 1.6452 0.1162 -1.1792

(0.0614) (0.5972) (1.1740) (1.2375) (1.4664) (1.5686)
25% SI <50% 0.2400*** -0.6297 -2.7202** -2.3548* -4.1136*** -5.9358***

(0.0665) (0.6369) (1.1971) (1.2629) (1.4681) (1.5788)
50% SI <75% -0.0615 -0.489 0.3124 0.5892 -1.7946 -3.3259**

(0.0651) (0.6320) (1.1999) (1.2630) (1.4735) (1.5846)
SI >75% -0.3631*** 0.2849 -1.2472 -1.0732 -3.4569** -4.7744***

(0.0587) (0.5348) (1.1125) (1.1846) (1.3996) (1.5046)
ln GDP per capita *
SI <25% 0.0606 0.0013 0.012 0.1656 0.3313**

(0.0599) (0.0950) (0.0973) (0.1341) (0.1652)
25% SI <50% 0.0875 0.2007** 0.2143** 0.3987*** 0.6038***

(0.0642) (0.0960) (0.0974) (0.1374) (0.1731)
50% SI <75% 0.0437 -0.007 0.0002 0.3242** 0.5187***

(0.0640) (0.0975) (0.0997) (0.1401) (0.1735)
SI >75% -0.065 0.0217 0.0052 0.2981** 0.5115***

(0.0542) (0.0908) (0.0913) (0.1264) (0.1573)
Pop density *
SI <25% -0.1119* -0.097 -0.0553 -0.0471

(0.0571) (0.0612) (0.0625) (0.0629)
25% SI <50% -0.1123** -0.0975 -0.0553 -0.0482

(0.0570) (0.0611) (0.0624) (0.0628)
50% SI <75% -0.1047* -0.0898 -0.0494 -0.0421

(0.0571) (0.0612) (0.0625) (0.0628)
SI >75% -0.0980* -0.0836 -0.0412 -0.0345

(0.0570) (0.0611) (0.0624) (0.0628)
ln surface area *
SI <25% -0.0751** -0.0683* 0.0069 0.036

(0.0360) (0.0370) (0.0498) (0.0507)
25% SI <50% 0.0933** 0.0984** 0.1822*** 0.2199***

(0.0390) (0.0400) (0.0512) (0.0521)
50% SI <75% 0.0061 0.0124 0.1150** 0.1475***

(0.0375) (0.0387) (0.0505) (0.0513)
SI >75% 0.056 0.0615* 0.1676*** 0.1937***

(0.0350) (0.0359) (0.0488) (0.0494)
PM2.5 *
SI <25% -0.0071 -0.0073 -0.0099* -0.0061

(0.0048) (0.0053) (0.0054) (0.0057)
25% SI <50% -0.0014 -0.0008 -0.0043 0.0017

(0.0047) (0.0052) (0.0054) (0.0057)
50% SI <75% -0.0110** -0.0111** -0.0166*** -0.0121**

(0.0047) (0.0051) (0.0054) (0.0056)
SI >75% 0.0035 0.0018 -0.0027 -0.0007

(0.0042) (0.0047) (0.0048) (0.0050)
Continued on next page
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Appendix Table 3: Estimated impact government response on COVID-19 transmission rate,
with country characteristics interactions, fixed e↵ects, selected countries, N=3381

Employment rate *
SI <25% -0.0076 -0.0154* -0.0318***

(0.0081) (0.0092) (0.0103)
25% SI <50% -0.0102 -0.0194** -0.0341***

(0.0084) (0.0097) (0.0110)
50% SI <75% -0.0078 -0.0248*** -0.0415***

(0.0081) (0.0095) (0.0105)
SI >75% -0.0012 -0.0163* -0.0356***

(0.0078) (0.0089) (0.0099)
Health expenditure, % GDP *
SI <25% -0.0592* -0.0639*

(0.0349) (0.0355)
25% SI <50% -0.0702* -0.0967**

(0.0395) (0.0403)
50% SI <75% -0.1361*** -0.1527***

(0.0402) (0.0411)
SI >75% -0.1190*** -0.1249***

(0.0345) (0.0349)
Physicians per 1000 people *
SI <25% -0.3339***

(0.0995)
25% SI <50% -0.4739***

(0.1068)
50% SI <75% -0.3975***

(0.1016)
SI >75% -0.3732***

(0.0982)
% 65 yo + *
SI <25% 0.0665**

(0.0269)
25% SI <50% 0.0978***

(0.0281)
50% SI <75% 0.0785***

(0.0273)
SI >75% 0.0593**

(0.0263)

R2 0.073 0.077 0.108 0.109 0.115 0.122
Note: The subset of selected countries includes those with number of infected>19 when school or
workplace closures are enacted, 53 countries. SI denotes the OxCGRT data provides a Government
Response Stringency Index. The omitted category of the SI index is 0, i.e., no government response.
Coe�cients presented, standard errors in parenthesis. Statistical significance is denoted as *10%, **5%,
and ***1% levels.
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Millions of individuals are required to work from home as part 
of national efforts to fight COVID-19. To evaluate the employment 
impact of the pandemic, an important point is whether individuals 
are able to work from home. This paper estimates the share of jobs 
that can be performed at home in 23 Latin American and Caribbean 
(LAC) countries as well as examines the workers' characteristics 
associated with such jobs. To carry out this analysis, this paper uses 
rich harmonised household surveys and presents two measures of 
teleworkability. The first measure of the feasibility of working from 
home is borrowed from Dingel and Neiman (2020), while the second 
closely follows the methodology of Saltiel (2020). We use the second 
measure as our benchmark, as it is based on a more representative 
task content of occupations for LAC countries. We find that the share 
of individuals who are able to work from home varies from 7% 
in Guatemala to 16% in the Bahamas. We document considerable 
variation in the potential to work from home across occupations, 
industries, regions and workers' socioeconomic characteristics. Our 
results show that some individuals are better positioned to cope with 
the current situation than others. This highlights the need to assist the 
most vulnerable workers in the context of the global pandemic.
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1 Introduction

Millions of individuals are required to work from home as part of national efforts to

fight COVID-19. This could become a long-term shift if we consider the possibility of a

prolonged or recurring outbreak. To evaluate the employment impact of the pandemic, an

important point is whether individuals are able to work from home. This strongly depends

on the task content of their occupation. Recent research shows that occupations can be

classified according to their feasibility of being conducted at home. Using task-content

information from the O*NET, Dingel and Neiman (2020) estimate that 34% of U.S. jobs

can be performed at home. Although this measure is computed for other countries, a

valid concern is that the task content of occupations may differ substantially between

developed and developing economies. Taking these differences into consideration, Saltiel

(2020) uses information on workers’ tasks in the World Bank’s Skills Toward Employability

and Productivity (STEP) surveys and estimates the share of jobs that can be done from

home in ten developing economies. The author finds that few jobs can be done at home,

ranging from 6% in Ghana to 23% in Yunnan (China).

This paper contributes to this line of research by estimating the share of jobs that

can be performed at home in 23 Latin American and Caribbean countries. It examines

the workers’ socioeconomic characteristics associated with such jobs as well as country-

level indicators linked with higher shares of teleworkability. To carry out the analysis,

this study uses rich household surveys harmonised by the Inter-American Development

Bank (IADB). The harmonised household surveys cover 23 countries, including one North

American country, ten South American countries, seven Central American countries and

five Caribbean countries.1 The surveys contain harmonised individual-level data on de-

mographic, educational, labour, income and housing conditions. More specifically, we

have information on workers’ occupations, employment status and other labour market

outcomes. The richness of the data gives us a unique opportunity to investigate how the

feasibility to work from home varies across occupations and to explore the characteristics

of individuals able to work from home.

Our first measure of the likelihood that the occupation can be performed at home is

borrowed from Dingel and Neiman (2020) while our second measure of teleworkability is

calculated by closely following the methodology of Saltiel (2020). In particular, for the

second measure, we use the average share of Bolivia and Colombia by occupation and

apply country-specific occupational weights. We compare the share of jobs that can be

done from home based on these two measures. We find that the proportion of individuals

who are able to work from home based on Saltiel (2020)’s measure is constantly lower than

the proportion using Dingel and Neiman (2020)’s measure. This is not surprising since

our second measure relies on information provided in Bolivia and Colombia while the first

measure is based on the task content of occupations in the US. Therefore, we choose to

1The list of countries is as follows: Argentina, the Bahamas, Belize, Bolivia, Brazil, Barbados,
Chile, Colombia, Costa Rica, the Dominican Republic, Ecuador, Guatemala, Honduras, Jamaica, Mexico,
Nicaragua, Panama, Paraguay, Peru, El Salvador, Trinidad and Tobago, Uruguay and Venezuela.
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use the second measure as our benchmark, as it is more likely to be representative of the

LAC region. We find that the percentage of individuals able to work from home varies

from 7% to 16%. The countries with the lowest share of teleworkability in our sample are

Guatemala and Honduras while the countries with the highest share are Costa Rica and

the Bahamas.

We examine the share of individuals who are able to work from home by occupation

and economic activity in each LAC country included in our sample. The feasibility to

work from home is positively correlated with higher skilled occupations. Indeed, the

share of teleworkability is much higher for managers and professionals (25% and 32%

respectively). A high share of teleworkability is found as well for clerical workers (45%).

On the opposite, individuals who work in elementary occupations are not likely to be

able to work from home. Besides, we find important differences across countries in the

feasibility of working from home in high-paying occupations. Among the different economic

activities, the highest share of individuals able to work from home is in finance, insurance

and the real estate sector. On the opposite, individuals working in agriculture or in the

construction sector are significantly less able to work from home.

We also explore the socioeconomic characteristics of individuals who are able to work

from home. The results show that the individuals who are the most educated, who live in

urban areas, who have a formal job and who work in a large firm, as well as the individuals

who are in the top quintile of the total labour income distribution are the most likely to

be able to work from home. Women are also more likely than men to be able to work from

home, a result that might be related to pre-established gender roles.

Lastly, we document the relationship between the national share of teleworkability and

country-level indicators such as GDP per capita and the Human Development Index. We

also look at how the proportion of individuals who have access to internet is associated

with the share of teleworkability at the country level. Overall, we find a clear positive

correlation between the country’s level of development and the share of individuals who

are able to work from home. We also investigate how the feasibility to work from home

varies across regions in each country. The results obtained are important from a policy

perspective, as they highlight the most vulnerable regions in each country - the ones with

a low share of teleworkability. This information might help policy makers on designing

policies that aim at easing the lockdown.

This study contributes to the literature on the feasibility to work from home in a

number of ways. First, we closely follow two recent studies by Dingel and Neiman (2020)

and Saltiel (2020) by examining the share of jobs that can be done from home in the context

of Latin America and the Caribbean.2 Therefore, our contribution is empirical rather

than methodological. Our results show considerable variation in the potential to work

from home across countries, and within each country, across occupations, industries and

regions. Second, the richness of the harmonised data set allows us to conduct an extensive

2Our empirical question focuses on estimating how many jobs can be perfomed from home. This differs
from estimating the actual number of individuals that are working from home.
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and comparable analysis on the characteristics of workers who are able to work from home.

In this respect, this study is in line with recent work by Mongey and Weinberg (2020).

The results provide important insights about the potential negative employment impacts

arising from COVID-19 and contribute to the discussion on how the pandemic exacerbates

inequalities (Adams-Prassl et al. 2020). More generally, our results also contribute to the

discussion on alternative work arrangements (Mas and Pallais 2017) by providing evidence

on the feasibility to work from home in Latin America and the Caribbean.

This paper proceeds as follows. Section 2 presents the data and explains how the

measures of teleworkability were constructed. Section 3 presents evidence on the share of

jobs that can be done from home, along with the worker characteristics associated with

the capacity to work from home, and country-levels indicators linked with high shares of

teleworkability. Lastly, Section 4 concludes.

2 Data and Measurement

This paper relies on rich household surveys harmonised by the IADB: the Harmonized

Household Surveys of Latin America and the Caribbean (CMAEH).3 This source of data

is unique as it contains a set of harmonised databases corresponding to 23 countries in

the region. The surveys collect information on demographic, educational, labour, income

and housing conditions at the individual level. More specifically, we have information

on workers’ employment status, occupation, labour income and other labour market out-

comes. We also have detailed information on individual sociodemographic characteristics,

including gender, age, educational attainment and other indicators. This gives us a unique

opportunity to study the share of individuals who are able to work from home in Latin

America and the Caribbean.

The databases already include a harmonised variable for individuals’ occupation. This

variable has been codified by the IADB following the one-digit ISCO for all the 23 coun-

tries. In addition, we construct a variable which maps the two-digit ISCOs. We do so by

following the general guidelines of the 2008 edition of the international standard classifi-

cation of occupation from ILO. This exercise was feasible for 20 countries in our sample.

We construct this variable in order to estimate the share of jobs than can be performed

at home for each ISCO at the one-digit level. However, our preferred measure for occupa-

tion is the one-digit ISCO harmonised by the IADB. We then construct two measures of

teleworkability, capturing the feasibility for each occupation to be performed from home.

The first one is borrowed from Dingel and Neiman (2020) while the second closely follows

Saltiel (2020).

Measuring the feasibility of teleworking following Dingel and Neiman (2020).

First, the authors construct the index of teleworkability, capturing the likelihood that the

occupation can be performed at home. To construct this measure, Dingel and Neiman

3The year of the survey differs for each country. We report this information in Table 1.

203
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 2

00
-2

29



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

(2020) use the responses to two O*NET surveys. O*NET provides occupation-level data

for the US. It contains information on work activities by occupation, where occupations

are defined based on the standard occupational classification (SOC). The measure of tele-

workability is computed based on responses covering “Work Context” and “Generalized

Work Activities”.4 For instance, if the occupation requires to perform general physical

activities, Dingel and Neiman (2020) conclude that the occupation cannot be performed

at home. If any of these statements are true, then they code the occupation as one that

cannot be performed from home.

Once the measure is constructed, the authors map the six-digit SOCs to the 2008

edition of the ISCO at the two-digit level. However, each SOC do not map to a unique

ISCO and vice versa. To circumvent this issue, Dingel and Neiman (2020) allocate the

SOC’s U.S. employment counts as weights across the ISCOs in proportion to the ISCO’s

employment shares in their set of countries. We replicate this exercise by using the ISCO’s

employment shares using the household surveys for the LAC countries. Once we apply

the weights, we obtain for each country the share of jobs that can be done from home in

each two-digit ISCO.

Measuring the feasibility of teleworking following Saltiel (2020). We closely

follow the methodology of Saltiel (2020) to construct the second measure of teleworkability.

More specifically, the author classifies workers as unable to work from home if they either

do not use a computer at work, lift heavy objects, repair electronic equipment, operate

heavy machinery or report that customer interaction is very important. The share of

individuals who are able to work from home can then be computed by occupation and by

country. Among the ten developing economies sampled by the STEP survey, there are two

LAC countries: Bolivia and Colombia. The information provided in these two countries

regarding the task content of occupations is likely to be representative for the all region.5

Therefore, we follow the methodology of Saltiel (2020) to obtain the share of individuals

who are able to work from home in Bolivia and Colombia and construct an average share

for each occupation. This gives us a share for all 2-digit ISCOs. The fact that the

two countries have different levels of development reinforces the representativeness of this

average for the LAC region. We can then merge this information to our individual-level

data using our two-digit ISCO variable and the one-digit ISCO variable harmonised by

4The statements from the “Work Context” are the following: 1) average respondent says they use
email less than once per month; 2) majority of respondents say they work outdoors every day; 3) average
respondent says they deal with violent people at least once a week; 4) average respondent says they spent
majority of time wearing common or specialized protective or safety equipment; 5) average respondent
says they spent majority of time walking or running; 6) average respondent says they are exposed to minor
burns, cuts, bites, or stings at least once a week; and 7) average respondent says they are exposed to
diseases or infection at least once a week. The statements from the “Generalized Work Activities” are
the following: 1) performing general physical activities is very important; 2) handling and moving objects
is very important; 3) controlling machines and processes [not computers nor vehicles] is very important;
4) operating vehicles, mechanized devices, or equipment is very important; 5) performing for or working
directly with the public is very important; 6) repairing and maintaining mechanical equipment is very
important; 7) repairing and maintaining electronic equipment is very important; 8) inspecting equipment,
structures, or materials is very important.

5One limitation of the STEP surveys used for Colombia and Bolivia for the year 2012 is that they only
collect information on urban areas. In this respect, our share of teleworkability might be overestimated.
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the IADB. We apply weights using the country-specific ISCO’s employment shares. As

previously mentioned, the share of individuals who are able to work from home differs

across countries since the ISCO employment shares vary across countries.

Summary statistics. Table 1 presents summary statistics for the sample used. The

first column provides the summary statistics for the whole sample. It includes 23 countries

and more than 1,385,000 individuals. For the purpose of the analysis, we have excluded

individuals who are younger than 16 years old. Therefore, we use sample weights to make

the results representative of the population older than 16 in each country.

A bit less than half of the individuals are men. The average individual is 41 years old.

Around 57% of the individuals in the sample are with a partner. There are important cross-

country differences in terms of educational attainment. However, the average individual

in the full sample has completed 8.9 years of education. On average, about 79% of the

individuals live in urban areas. In terms of employment outcomes, informality is common

in Latin America and the Caribbean. On average, 54% of the workers in the full sample

are informal. Furthermore, the majority of the individuals work in small firms. Around

43% of the individuals live with children. The rest of the measures such as access to

basic infrastructure and “dwelling overcrowded” provide an idea of the wealthiness of the

population.6

6On a side note, the proportion of individuals who have more than one occupation remains low on
average (7%). However, for some countries, it reaches more than 20%. Not taking into account individuals’
secondary occupations might underestimate the share of workers who are able to work from home. Further
research should investigate this. However, for the sake of simplicity, we focus on the individuals’ main
occupation.
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Table 1. Summary Statistics, by Country

All ARG BHS BLZ BOL BRA BRB CHL COL CRI DOM ECU
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sociodemographic
Characteristics
Male 0.48 0.47 0.46 0.49 0.49 0.48 0.48 0.46 0.48 0.48 0.49 0.48
Age 41 42.3 41.7 37.6 39.4 41.9 46.9 43.5 40.6 41.9 40.5 39.5
With partner 0.57 0.54 0.60 0.57 0.28 0.51 0.54 0.51 0.50 0.59
Years of education 8.9 11.1 8.3 9.4 8.3 11.3 10.6 8.7 9 8.8 9.2
Urban 0.79 0.50 0.70 0.86 0.87 0.79 0.74 0.68 0.70

Employment Outcomes
More than one occupation 0.07 0.08 0.03 0.08 0.04 0.02 0.04 0.09 0.05 0.08 0.05
Informal 0.54 0.48 0.82 0.38 0.31 0.64 0.31 0.61 0.54
Public sector 0.11 0.18 0.20 0.11 0.34 0.12 0.20 0.11 0.04 0.14 0.10
Underemployment 0.07 0.09 0.02 0.02 0.03 0.09 0.07 0.14 0.11 0.10
Hours worked per week 37.8 43.4 43.4 38.6 40.8 41.9 43.3 42.9 41.4 38.5
Size firm - Small 0.53 0.44 0.73 0.45 0.38 0.62 0.47 0.52 0.62
Size firm - Medium 0.17 0.29 0.21 0.09 0.30 0.14 0.16 0.16 0.15
Size firm - Large 0.29 0.26 0.06 0.46 0.32 0.25 0.37 0.32 0.23

Environment at home
Household size 3.4 3.2 2.6 4.2 3.6 2.9 2.3 3.3 3.4 3.3 3.4 3.7
Living with children 0.43 0.37 0.55 0.49 0.34 0.37 0.46 0.36 0.41 0.52
Dwelling overcrowded 0.05 0.07 0.20 0.002 0.006 0.05 0.008 0.03 0.07
Access to water pipe 0.88 0.90 0.87 0.67 0.85 0.95 0.89 0.99 0.75 0.88
Access to electricity 0.97 0.92 0.92 1 1 0.98 0.99 0.97 0.99
Access to phone 0.89 0.42 0.90 0.94 0.98 0.95 0.98 0.85 0.92
Access to computer 0.41 0.19 0.24 0.49 0.58 0.37 0.46 0.22 0.41
Access to internet 0.34 0.15 0.42 0.53 0.36 0.65 0.33

Sample size 1,385,992 90,273 4,998 5,550 24,895 275,615 13,450 168,834 145,537 28,147 18,854 75,499
Survey year 2015 2012 2007 2015 2014 2015 2013 2015 2016 2015 2015

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 1 presents the summary statistics by country for individuals aged 16 and above. The “Environment at home” category indicates the share of

households in each country who belong to each category. “Underemployment” is equal to 1 if the person works less than 30 hours per week but desires to work

more, and is equal to 0 otherwise. “Dwelling overcrowded” is equal to 1 if there is more than 2.5 persons per room in the dwelling, 0 otherwise. Argentina and

the Bahamas only have information from urban areas. When the information was not available, we leave the cells as empty.
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Table 1. Summary Statistics, by Country (Continued)

GTM HND JAM MEX NIC PAN PER PRY SLV TTO URY VEN
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

Sociodemographic
Characteristics
Male 0.47 0.46 0.48 0.48 0.48 0.49 0.48 0.49 0.46 0.49 0.47 0.50
Age 36.8 38.1 40 40.1 37.4 42.4 42.1 39.7 40.2 43.5 44.7 39.6
With partner 0.59 0.53 0.60 0.56 0.54 0.56 0.51 0.46 0.57
Years of education 6.7 9.8 9.1 7.2 10.3 9.4 9.2 7.6 9.2 9.9
Urban 0.53 0.56 0.53 0.79 0.60 0.71 0.78 0.62 0.62 0.84

Employment Outcomes
More than one occupation 0.18 0.27 0.04 0.08 0.12 0.07 0.22 0.08 0.05 0.01 0.10 0.02
Informal 0.81 0.84 0.68 0.77 0.48 0.80 0.78 0.72 0.25 0.58
Public sector 0.06 0.06 0.13 0.10 0.16 0.09 0.11 0.07 0.24 0.15 0.21
Underemployment 0.13 0.04 0.04 0.10 0.08 0.03 0.07 0.02
Hours worked per week 36.6 42.1 41.3 37.5 38.8 40.8 42.1 39.4 38.6 38.9
Size firm - Small 0.61 0.96 0.57 0.54 0.44 0.65 0.66 0.49 0.14 0.40 0.53
Size firm - Medium 0.22 0.04 0.27 0.29 0.16 0.14 0.22 0.20 0.06 0.22 0.14
Size firm - Large 0.17 0.005 0.16 0.17 0.41 0.20 0.12 0.32 0.79 0.37 0.32

Environment at home
Household size 4.8 4.3 3 3.8 5.4 3.5 3.9 4 3.6 3.1 3.9
Living with children 0.66 0.61 0.39 0.49 0.74 0.41 0.47 0.50 0.47 0.30 0.48
Dwelling overcrowded 0.41 0.11 0.05 0.30 0.07 0.10 0.10 0.20 0.03 0.06
Access to water pipe 0.88 0.97 0.65 0.94 0.84 0.81 0.79 0.94 0.94
Access to electricity 0.81 0.88 0.99 0.80 0.92 0.93 0.99 0.97 0.99 1
Access to phone 0.83 0.90 0.86 0.90 0.91 0.87 0.96 0.94 0.98 0.41
Access to computer 0.17 0.30 0.38 0.31 0.29 0.16 0.66 0.40
Access to internet 0.08 0.26 0.28 0.02 0.64 0.23 0.23 0.17 0.53 0.29

Sample size 33,677 15,481 14,104 51,094 19,909 30,596 85,090 21,661 53,895 24,970 99,252 84,611
Survey year 2014 2017 2012 2014 2014 2017 2014 2015 2017 2013 2013 2015

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 1 presents the summary statistics by country for individuals aged 16 and above. The “Environment at home” category indicates the share of

households in each country who belong to each category. “Underemployment” is equal to 1 if the person works less than 30 hours per week but desires to

work more, and is equal to 0 otherwise. “Dwelling overcrowded” is equal to 1 if there is more than 2.5 persons per room in the dwelling, 0 otherwise. When

the information was not available, we leave the cells as empty.

3 Results

In this section, we provide empirical evidence on the share of workers who are able to

work from home. We compute the national share for all LAC countries in our sample. We

also look at the variation in the share of teleworkability across occupations and economic

activities within each country. Second, we examine the socioeconomic characteristics of

the workers who are able to work from home. Finally, we document the relationships

between countries’ share of teleworkability and a number of country-specific measures.

We investigate the share of individuals who are able to work from home at the regional

level for most of the countries in our sample.
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3.1 Share of Individuals Who Can Work From Home

Figure 1 shows the share of jobs which can be done from home in each country.7 We

report two shares per country: the first one based on Dingel and Neiman (2020)’s measure

of teleworkability and the second, based on Saltiel (2020)’s methodology. The share of

individuals who are able to work from home is much lower when we use the method of

Saltiel (2020). This is not surprising since the second measure has been calculated based

on the task content of occupations for developing countries. For the rest of the analysis,

we report the shares obtained by using the index of Saltiel (2020) since it is more likely to

be representative of Latin America and the Caribbean. Therefore, the share of individuals

who are able to work from home varies between 7 and 16%. The countries with the lowest

shares of teleworkability in our sample are Guatemala and Honduras while the countries

with the highest shares are Costa Rica and the Bahamas.

Figure 1. Share of Jobs Which Can Be Done from Home, by Country

0.16 0.35
0.16 0.33

0.15 0.33
0.15 0.31

0.14 0.31
0.13 0.27
0.13 0.27

0.14 0.26
0.13 0.26

0.12 0.25
0.10 0.24
0.11 0.24

0.10 0.23
0.10 0.22
0.11 0.21

0.10 0.20
0.09 0.19

0.08 0.18
0.08 0.16

0.07 0.16
0.09 0.16

0.08 0.15
0.07 0.14

0 .1 .2 .3 .4
Share of individuals able to  work from home
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Dominican Republic
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Dingel and Neiman (2020) Saltiel (2020)

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure 1 shows the proportion of individuals who are able to work from home by country. This
proportion varies across countries, from 7% in Guatemala to 16% in the Bahamas.

The share of individuals who can work from home differs across occupations. Table 2

reports the shares by one-digit occupation and country. The results show that the feasi-

bility of working from home is positively correlated with occupation-level wages. Indeed,

the share of teleworkability is much higher for managers and professionals (25% and 32%

respectively). A high share of teleworkability is found as well for clerical workers (45%).

On the opposite, individuals who work in skilled agricultural jobs and in elementary oc-

cupations are not likely to be able to work from home. There are important differences

7Alternatively, Figure A.1 in the appendix provides a map of Latin America where the share of jobs
that can be done at home is reported by country. The shares are based on Saltiel (2020)’s measure, which
is our preferred measure as it gives a better approximation for developing countries in the LAC region.
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across countries in the feasibility of working from home in high-paying occupations. For

instance, 55% of the managers in Brazil are able to work from home, compared to only 13%

of their peers in Paraguay. There is much less variation across countries for lower-skilled

occupations.

Table 2. Share of Individuals Who Can Work from Home, by One-digit Occupation and
Country

All ARG BHS BLZ BOL BRA BRB CHL COL CRI DOM ECU
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1 Manager 0.25 0.24 0.22 0.46 0.24 0.55 0.25 0.29 0.35 0.31
2 Professional 0.32 0.24 0.31 0.28 0.31 0.32 0.37 0.39 0.29 0.30
3 Technician 0.20 0.24 0.29 0.26 0.24 0.24 0.26 0.25 0.28 0.28
4 Clerical 0.45 0.42 0.45 0.43 0.44 0.42 0.45 0.45 0.47 0.45
5 Services/Sales 0.07 0.08 0.10 0.09 0.07 0.07 0.04 0.05 0.07 0.08
6 Agricultural 0 0 0 0 0 0 0 0 0 0
7 Craft/Trades 0.02 0.02 0.01 0.02 0.02 0.01 0.008 0.008 0.03 0.03
8 Machine Operators 0.002 0.003 0.001 0.001 0.002 0.002 0.0003 0.0008 0.002 0.002
9 Elementary Occupations 0.01 0.006 0.02 0.01 0.02 0.01 0.008 0.004 0.01 0.01

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 2 reports the share of workers who can work from home by one-digit occupation and by country. The share has been calculated as a

weighted average of all the shares of the two-digit occupations within the one-digit occupation. Besides, the share is based on Saltiel (2020)’s

measure of teleworkability. When the information was not available, we leave the cells as empty.

Table 2. Share of Individuals Who Can Work from Home by One-digit Occupation and
Country (Continued)

GTM HND JAM MEX NIC PAN PER PRY SLV TTO URY VEN
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

1 Manager 0.19 0.25 0.29 0.23 0.22 0.24 0.26 0.13 0.30 0.26 0.31
2 Professional 0.26 0.30 0.36 0.32 0.36 0.32 0.38 0.31 0.32 0.41 0.30
3 Technician 0.22 0.28 0.29 0.10 0.30 0.29 0.13 0.27 0.23 0.27 0.24
4 Clerical 0.44 0.44 0.48 0.50 0.47 0.42 0.39 0.47 0.44 0.44 0.41
5 Services/Sales 0.08 0.08 0.05 0.05 0.05 0.15 0.02 0.06 0.08 0.05 0.08
6 Agricultural 0 0 0 0 0 0 0 0 0 0 0
7 Craft/Trades 0.03 0.03 0.006 0.06 0.02 0.03 0.001 0.02 0.03 0.008 0.02
8 Machine Operators 0.002 0.003 0.0005 0.002 0.001 0.001 0.0001 0.0006 0.003 0.001 0.002
9 Elementary Occupations 0.008 0.007 0.006 0.02 0.004 0.01 0.001 0.005 0.009 0.007 0.01

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 2 reports the share of workers who can work from home by one-digit occupation and by country. The share has been calculated as a

weighted average of all the shares of the two-digit occupations within the one-digit occupation. Besides, the share is based on Saltiel (2020)’s

measure of teleworkability. When the information was not available, we leave the cells as empty.

Table 3 presents the share of individuals who can work from home across countries

and across economic activities. The highest share of teleworkability is found in finance,

insurance and the real estate sector (24% for the full sample). It varies however consider-

ably across countries, from 17% in Colombia and in Jamaica to 36% in Peru. A significant

share of individuals are able to work from home as well in social and community services

(19% for the full sample). On the opposite, individuals are much less likely to be able to

work from home when they work in agriculture and in the construction sector (0.007%

and 0.04% respectively).
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Table 3. Share of Individuals Who Can Work from Home by Economic Activity and
Country

All ARG BHS BLZ BOL BRA BRB CHL COL CRI DOM ECU
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Agriculture, hunting, forestry and fishing 0.007 0.10 0.05 0.01 0.003 0.006 0.03 0.006 0.05 0.006 0.009
Mining and quarrying 0.09 0.15 0.09 0.06 0.06 0.11 0.09 0.08 0.08 0.08 0.10
Manufacturing industries 0.09 0.09 0.09 0.07 0.05 0.11 0.08 0.09 0.12 0.09 0.07
Electricity, gas and water 0.14 0.13 0.18 0.11 0.12 0.19 0.15 0.21 0.22 0.18 0.15
Construction 0.04 0.05 0.07 0.05 0.04 0.04 0.06 0.05 0.12 0.05 0.04
Wholesale and retail trade 0.11 0.11 0.12 0.12 0.08 0.13 0.13 0.09 0.13 0.11 0.09
Transport and storage 0.09 0.20 0.17 0.13 0.04 0.10 0.12 0.11 0.10 0.09 0.08
Financial, insurance and real estate 0.24 0.23 0.29 0.21 0.30 0.28 0.25 0.17 0.31 0.33 0.20
Social and community services 0.19 0.21 0.19 0.16 0.20 0.20 0.19 0.18 0.22 0.23 0.18

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 3 reports the share of workers who can work from home by economic activity and by country. The share is based on Saltiel (2020)’s measure

of teleworkability. When the information was not available, we leave the cells as empty.

Table 3. Share of Individuals Who Can Work from Home by Economic Activity and
Country (Continued)

GTM HND JAM MEX NIC PAN PER PRY SLV TTO URY VEN
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

Agriculture, hunting, forestry and fishing 0.003 0.002 0.006 0.02 0.02 0.004 0.005 0.007 0.02 0.03 0.008
Mining and quarrying 0.04 0.10 0.11 0.07 0.09 0.10 0.02 0.02 0.14 0.08 0.12
Manufacturing industries 0.05 0.08 0.07 0.06 0.17 0.08 0.06 0.05 0.11 0.08 0.07
Electricity, gas and water 0.02 0.17 0.15 0.12 0.23 0.23 0.18 0.16 0.18 0.17 0.16
Construction 0.05 0.03 0.05 0.04 0.22 0.06 0.04 0.03 0.07 0.04 0.04
Wholesale and retail trade 0.13 0.11 0.10 0.09 0.14 0.09 0.10 0.07 0.16 0.11 0.10
Transport and storage 0.34 0.15 0.08 0.11 0.08 0.07 0.12 0.08 0.11 0.13 0.06
Financial, insurance and real estate 0.30 0.17 0.22 0.31 0.28 0.36 0.30 0.21 0.22 0.23 0.20
Social and community services 0.17 0.18 0.16 0.23 0.23 0.21 0.18 0.14 0.18 0.18 0.17

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 3 reports the share of workers who can work from home by economic activity and by country. The share is based on Saltiel (2020)’s measure

of teleworkability. When the information was not available, we leave the cells as empty.

3.2 Characteristics of Individuals Who Can Work From Home

We now examine the characteristics of the workers who can perform their job from home.

To examine which observed characteristics are associated with occupations that are more

feasible to do from home, we estimate the following OLS regression:

WFHijc = β0 + β1Xij + εij (1)

where the dependent variable WFHij is a binary variable which equals 1 if the share

of teleworkability at the one-digit occupational level is above the median, and 0 otherwise.

In other words, this variable is equal to 1 if the individual is working in an occupation that

is relatively more feasible to be performed from home, and 0 otherwise. Xij is a vector

of characteristics including gender, age, being with a partner, educational attainment,

whether the individual lives in a urban area, informality, the size of the firm where the

individual works, and lastly, the quintiles in terms of the total labour income distribution.
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Table 4. Characteristics of Individuals Able to Work from Home

All ARG BHS BLZ BOL BRA BRB CHL COL CRI DOM ECU
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Male -0.114∗∗∗ -0.173∗∗∗ -0.227∗∗∗ -0.126∗∗∗ -0.087∗∗∗ -0.160∗∗∗ -0.237∗∗∗ -0.193∗∗∗ -0.048∗∗∗ -0.095∗∗∗ -0.166∗∗∗ -0.108∗∗∗

(0.002) (0.007) (0.016) (0.020) (0.006) (0.003) (0.010) (0.007) (0.004) (0.008) (0.016) (0.005)
Aged 41 and above 0.010∗∗∗ 0.071∗∗∗ -0.030∗ 0.100∗∗∗ 0.021∗∗∗ -0.019∗∗∗ -0.080∗∗∗ -0.035∗∗∗ -0.004 -0.006 0.013 0.016∗∗∗

(0.002) (0.007) (0.016) (0.017) (0.006) (0.003) (0.011) (0.007) (0.004) (0.008) (0.014) (0.005)
With partner -0.041∗∗∗ -0.003 -0.036∗∗∗ -0.060∗∗∗ 0.033∗∗∗ -0.022∗∗∗ -0.037∗∗∗ -0.031∗∗∗ -0.024∗ -0.037∗∗∗

(0.002) (0.007) (0.007) (0.003) (0.012) (0.007) (0.004) (0.008) (0.014) (0.005)
Above 9 years education 0.258∗∗∗ 0.326∗∗∗ 0.398∗∗∗ 0.186∗∗∗ 0.262∗∗∗ 0.156∗∗∗ 0.177∗∗∗ 0.185∗∗∗ 0.307∗∗∗ 0.239∗∗∗ 0.188∗∗∗

(0.002) (0.007) (0.020) (0.007) (0.003) (0.017) (0.007) (0.005) (0.010) (0.017) (0.005)
Urban 0.019∗∗∗ 0.051∗∗∗ 0.030∗∗∗ 0.046∗∗∗ 0.048∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.026∗ 0.046∗∗∗

(0.002) (0.018) (0.007) (0.004) (0.006) (0.005) (0.009) (0.013) (0.005)
Informal -0.063∗∗∗ 0.022∗∗ -0.345∗∗∗ -0.038∗∗∗ -0.041∗∗∗ -0.064∗∗∗ -0.019∗ -0.144∗∗∗ -0.079∗∗∗

(0.003) (0.010) (0.012) (0.004) (0.008) (0.008) (0.010) (0.031) (0.006)
Ref group: small firm
Firm Size - Medium 0.099∗∗∗ 0.085∗∗∗ 0.158∗∗∗ 0.045∗∗∗ 0.111∗∗∗ 0.142∗∗∗ 0.138∗∗∗ 0.191∗∗∗ 0.134∗∗∗

(0.003) (0.010) (0.010) (0.005) (0.008) (0.008) (0.012) (0.030) (0.008)
Firm Size - Large 0.110∗∗∗ 0.149∗∗∗ 0.075∗∗∗ 0.084∗∗∗ 0.116∗∗∗ 0.196∗∗∗ 0.196∗∗∗ 0.184∗∗∗ 0.209∗∗∗

(0.003) (0.011) (0.017) (0.004) (0.008) (0.009) (0.011) (0.033) (0.009)
Ref group: first quintile
Second quintile 0.003∗∗ 0.058∗∗∗ 0.116∗∗∗ -0.015 -0.011 -0.010∗∗ 0.078∗∗∗ -0.005∗∗∗ 0.001 0.032∗∗∗ 0.011 0.013∗∗

(0.003) (0.010) (0.023) (0.026) (0.009) (0.004) (0.015) (0.009) (0.005) (0.012) (0.018) (0.005)
Third quintile 0.027∗∗∗ 0.090∗∗∗ 0.310∗∗∗ -0.056∗∗ 0.005 0.029∗∗∗ 0.225∗∗∗ 0.114∗∗∗ -0.021∗∗∗ 0.090∗∗∗ 0.024 0.007

(0.003) (0.011) (0.024) (0.024) (0.009) (0.004) (0.015) (0.011) (0.006) (0.013) (0.018) (0.007)
Fourth quintile 0.102∗∗∗ 0.181∗∗∗ 0.512∗∗∗ -0.025 0.046∗∗∗ 0.106∗∗∗ 0.438∗∗∗ 0.260∗∗∗ 0.006 0.280∗∗∗ 0.086∗∗∗ 0.037∗∗∗

(0.003) (0.012) (0.023) (0.028) (0.010) (0.004) (0.017) (0.011) (0.007) (0.014) (0.021) (0.008)
Fifth quintile 0.317∗∗∗ 0.331∗∗∗ 0.695∗∗∗ 0.010 0.101∗∗∗ 0.339∗∗∗ 0.670∗∗∗ 0.512∗∗∗ 0.240∗∗∗ 0.430∗∗∗ 0.231∗∗∗ 0.291∗∗∗

(0.003) (0.013) (0.023) (0.027) (0.010) (0.005) (0.014) (0.011) (0.008) (0.015) (0.023) (0.010)

R-squared 0.3069 0.2784 0.2968 0.2502 0.3796 0.2629 0.3207 0.3016 0.3140 0.4391 0.4057 0.4050
Observations 549,505 35,629 2,877 2,056 13,835 113,620 6,565 73,927 84,429 11,194 7,671 40,535
Region fixed effects Yes Yes No No Yes Yes No Yes Yes Yes Yes Yes

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 4 presents the estimated coefficients from equation (1) for the full sample in column 1 and separately for each country in the sample from column 2 to column 24. The results

are weighted using sample weights to represent the population aged 16 and above. Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4. Characteristics of Individuals Able to Work from Home (Continued)

GTM HND JAM MEX NIC PAN PER PRY SLV TTO URY VEN
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

Male -0.105∗∗∗ 0.003 -0.098∗∗∗ -0.071∗∗∗ -0.049∗∗∗ -0.154∗∗∗ -0.076∗∗∗ -0.118∗∗∗ -0.065∗∗∗ -0.350∗∗∗ -0.114∗∗∗ -0.176∗∗∗

(0.009) (0.008) (0.022) (0.006) (0.010) (0.009) (0.003) (0.010) (0.008) (0.009) (0.003) (0.006)
Aged 41 and above -0.015∗∗ 0.020∗∗∗ 0.107∗∗∗ 0.024∗∗∗ 0.043∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.040∗∗∗ 0.018∗∗∗ -0.079∗∗∗ 0.025∗∗∗ 0.024∗∗∗

(0.007) (0.008) (0.024) (0.006) (0.010) (0.009) (0.003) (0.010) (0.007) (0.009) (0.003) (0.005)
With partner -0.028∗∗∗ 0.0005 -0.032∗∗∗ -0.029∗∗∗ -0.041∗∗∗ -0.028∗∗∗ -0.024∗∗∗ -0.007 -0.004

(0.008) (0.007) (0.006) (0.011) (0.003) (0.010) (0.007) (0.009) (0.003)
Above 9 years education 0.170∗∗∗ 0.144∗∗∗ 0.276∗∗∗ 0.316∗∗∗ 0.262∗∗∗ 0.162∗∗∗ 0.267∗∗∗ 0.238∗∗∗ 0.364∗∗∗ 0.208∗∗∗

(0.016) (0.024) (0.007) (0.013) (0.012) (0.003) (0.012) (0.008) (0.004) (0.005)
Urban 0.053∗∗∗ 0.036∗∗∗ 0.020 0.019∗∗∗ -0.015 0.038∗∗∗ 0.052∗∗∗ 0.010 0.032∗∗∗ 0.037∗∗∗

(0.007) (0.008) (0.026) (0.006) (0.014) (0.011) (0.003) (0.011) (0.006) (0.004)
Informal -0.220∗∗∗ -0.270∗∗∗ -0.065∗∗∗ -0.303∗∗∗ -0.063∗∗∗ -0.171∗∗∗ -0.177∗∗∗ 0.016∗∗ -0.005 -0.140∗∗∗

(0.017) (0.058) (0.009) (0.014) (0.017) (0.008) (0.018) (0.012) (0.004) (0.009)
Ref group: small firm
Firm Size - Medium 0.111∗∗∗ 0.128∗∗∗ 0.118∗∗∗ 0.088∗∗∗ 0.187∗∗∗ 0.132∗∗∗ 0.136∗∗∗ 0.144∗∗∗ -0.021 0.066∗∗∗ 0.070∗∗∗

(0.009) (0.036) (0.025) (0.008) (0.019) (0.005) (0.014) (0.010) (0.019) (0.005) (0.009)
Firm Size - Large 0.042∗∗∗ 0.020 0.102∗∗∗ 0.031∗∗∗ 0.223∗∗∗ 0.319∗∗∗ 0.146∗∗∗ 0.184∗∗∗ -0.064∗∗∗ 0.163∗∗∗ 0.210∗∗∗

(0.016) (0.093) (0.034) (0.011) (0.018) (0.008) (0.021) (0.012) (0.013) (0.005) (0.010)
Ref group: first quintile
Second quintile 0.006 -0.001 0.016 0.026∗∗∗ -0.034∗∗ 0.036∗∗ 0.017∗∗∗ 0.004 0.006 0.160∗∗∗ -0.001 0.038∗∗∗

(0.006) (0.006) (0.028) (0.007) (0.015) (0.014) (0.003) (0.011) (0.008) (0.012) (0.005) (0.008)
Third quintile 0.016∗∗ 0.004 0.126∗∗∗ 0.049∗∗∗ -0.009 0.165∗∗∗ 0.014∗∗∗ 0.020 -0.036∗∗∗ 0.343∗∗∗ 0.059∗∗∗ 0.072∗∗∗

(0.007) (0.008) (0.032) (0.008) (0.018) (0.019) (0.004) (0.014) (0.010) (0.015) (0.005) (0.007)
Fourth quintile 0.072∗∗∗ 0.009 0.025 0.143∗∗∗ 0.070∗∗∗ 0.296∗∗∗ 0.043∗∗∗ 0.081∗∗∗ 0.022∗ 0.476∗∗∗ 0.139∗∗∗ 0.129∗∗∗

(0.011) (0.012) (0.52) (0.010) (0.017) (0.019) (0.005) (0.015) (0.012) (0.016) (0.006) (0.009)
Fifth quintile 0.256∗∗∗ 0.168∗∗∗ 0.500∗∗∗ 0.361∗∗∗ 0.154∗∗∗ 0.392∗∗∗ 0.149∗∗∗ 0.239∗∗∗ 0.282∗∗∗ 0.668∗∗∗ 0.290∗∗∗ 0.148∗∗∗

(0.013) (0.022) (0.040) (0.011) (0.017) (0.018) (0.006) (0.017) (0.013) (0.014) (0.006) (0.008)

R-squared 0.2966 0.2485 0.3073 0.3432 0.3890 0.4213 0.4226 0.3821 0.3549 0.3192 0.3965 0.3296
Observations 16,064 6,103 1,511 28,867 8,162 11,044 51,227 5,834 18,672 8,803 57,232 38,322
Region fixed effects Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table 4 presents the estimated coefficients from equation (1) for the full sample in column 1 and separately for each country in the sample from column 2 to column 24. The results

are weighted using sample weights to represent the population aged 16 and above. Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

212
C

ov
id

 E
co

no
m

ic
s 1

4,
 6

 M
ay

 2
02

0:
 2

00
-2

29



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

We include, when the information is available, region fixed effects. Lastly, we estimate

equation (1) for the full sample and then separately by country. We apply sample weigths

for the results to be representative of the all population above 16 years old.

Table 4 presents the results of the OLS regressions.8 The results for the all sample

indicate that men are less likely to be able to work from home compared to women. This

might be due to pre-established gender roles, where women have had to ask for more

flexible working arrangements to be able to take care of children. A higher educational at-

tainment as well as living in a urban area increases the likelihood to work in an occupation

which involves tasks that can be done from home. Informality is associated with a lower

probability of being able to work from home. Among other reasons, this is likely related to

the fact that informality often involves businesses where a lot of interactions with others

are required. As for the effect of working in large firms, the probability of being able to

work from home increases. Lastly, being in the top quintile of the total labour income

distribution increases the likelihood to be able to work from home. The coefficients differ

across countries in terms of magnitude. However, the direction of the effects remains in

general the same. Overall, our results are in line with recent works by Saltiel (2020) and

Mongey and Weinberg (2020).

3.3 Share of Teleworkability and Level of Development

We also want to examine the relationship between the country’s share of teleworkability

and some country-level indicators. A first important indicator that is susceptible to be

highly correlated with the share of jobs that can be done from home is the level of devel-

opment of the country. Figure 2 shows a clear positive relationship between the share of

individuals able to work from home and the level of development. Countries with higher

levels of GDP per capita such as the Bahamas or Trinidad and Tobago are clearly coun-

tries where more individuals have the potential to work from home. On the opposite,

countries characterised by low levels of GDP per capita, such as Honduras and Nicaragua,

have lower shares of teleworkability. Similarly, Figure 3 documents a positive relationship

between the share of jobs that can be performed from home and the Human Development

Index. Our results echo the findings of previous research by Dingel and Neiman (2020)

and Gottlieb, Grobovs̆ek and Poschke (2020).

Another way to look at this relationship is to examine the proportion of individuals

using internet and to see how this connects with the share of teleworkability. Figure

4 illustrates this relationship. The connection is the same: countries where a higher

proportion of individuals use internet also have higher shares of teleworkability.

8Alternatively, Table A.2 in the Appendix reports the share of individuals who are able to work from
home along several characteristics.
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Figure 2. Share of Jobs Which Can Be Done from Home, by GDP (PPP) per capita
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Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Figure 2 illustrates a positive relationship between the share of teleworkability and GDP per capita

(2018). The measures for GDP per capita were taken from World Bank (2020).

Figure 3. Share of Jobs Which Can Be Done from Home, by HDI
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Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Figure 3 illustrates a positive relationship between the share of teleworkability and the Human

Development Index (2018). The measures for HDI were taken from United Nations (2019).
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Figure 4. Share of Jobs Which Can Be Done from Home, by Internet Usage
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Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Figure 4 illustrates a positive relationship between the share of teleworkability and the proportion

of individuals using internet. Guatemala and the Dominican Republic are outliers in the World Bank data.

The proportions were taken from World Bank (2020).

Lastly, we explore within-country heterogeneity by examining the variation in the

feasibility to work from home at the regional level.9 This might be informative given the

fact that some countries in Latin America and the Caribeean have implemented social

distancing policies recently to contain the virus.10 We find significant differences across

regions. The capitals are often in areas in which the share of teleworkability is high.

However, for other regions, the share of individuals who are able to work from home

might be far below the national average share. The results obtained are important from

a policy perspective, as they highlight the most vulnerable regions in each country - the

ones with a low share of teleworkability. This information might help policy makers on

designing policies that aim at easing the lockdown.

4 Conclusion

To stop the spread of COVID-19, countries around the world have started to put in place

broad social distancing policies. One of the implications is that individuals have to work

from home. The employment effect of such policy is likely to vary depending on the

feasibility of the job to be performed from home. Indeed, some individuals might be more

affected than others due to the impossibility to carry certain tasks from home. In order

to identify the individuals who are able to work from home, we construct two measures of

teleworkability: the first one follows the methodology of Dingel and Neiman (2020) while

the second measure closely follows Saltiel (2020). We use as our benchmark the second

measure, as it better reflects the task content of occupations in Latin America and the

Caribbean.

9The maps for each country are reported in the Appendix from Figure A.2 to A.18.
10Information about the level of the lockdown in each country is provided in Table A.1 in the Appendix.
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We find that the percentage of individuals able to work from home varies from 7% to

16%. The countries with the lowest share of teleworkability are Guatemala and Honduras

while the countries with the highest share are Costa Rica and the Bahamas. We examine

the share of individuals who are able to work from home by occupation and economic

activity in each LAC country included in our sample. The feasibility to work from home

is positively correlated with higher skilled occupations. Besides, we find considerable

variation across occupations and across countries. Among the different economic activities,

the highest share of individuals able to work from home is in finance, insurance and the real

estate sector. On the opposite, individuals working in agriculture or in the construction

sector are significantly less able to work from home.

We also explore the socioeconomic characteristics of individuals who are able to work

from home. The results show that the individuals who are the most educated, who live in

urban areas, who have a formal job and who work in a large firm, as well as the individuals

who are in the top quintile of the total labour income distribution are the most likely to

be able to work from home. Women are also more likely than men to be able to work from

home, a result that might be related to pre-established gender roles.

Lastly, we explore the relationship between the national share of teleworkability and

country-level indicators such as GDP per capita and the Human Development Index. We

find a clear positive correlation between the country’s level of development and the share

of individuals who are able to work from home. Furthermore, we also investigate how the

feasibility to work from home varies across regions in each country. The results obtained

are important from a policy perspective, as they highlight the most vulnerable regions in

each country - the ones with a low share of teleworkability. The results obtained provide

important insights about the potential negative employment impacts arising from COVID-

19 and highlight the need to assist the most vulnerable workers in the context of the global

pandemic.
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Appendix

Table A.1. Situation Under COVID-19, by Country

Country Country code Lockdown Valid up to

Argentina ARG Total 15-Apr
Bahamas BHS Total 15-Apr
Belize BLZ Partial 15-Apr
Bolivia BOL Total 16-Apr
Brazil BRA Partial 16-Apr
Barbados BRB Partial 16-Apr
Chile CHL Partial 16-Apr
Colombia COL Total 16-Apr
Costa Rica CRI Partial 8-Apr
Dominican Republic DOM Partial 16-Apr
Ecuador ECU Total 17-Apr
Guatemala GTM Total 19-Apr
Honduras HND Total 19-Apr
Jamaica JAM Partial 16-Apr
Mexico MEX Partial 16-Apr
Nicaragua NIC Partial 9-Apr
Panama PAN Total 16-Apr
Peru PER Total 15-Apr
Paraguay PRY Total 15-Apr
El Salvador SLV Total 15-Apr
Trinidad & Tobago TTO Partial 15-Apr
Uruguay URY Partial 16-Apr
Venezuela VEN Total 25-Mar

Source: Information from Inter-American Development Bank (2020)
and International Monetary Fund (2020).
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Table A.2. Share of Individuals Who Can Work from Home by Individual Characteristics
and by Country

All ARG BHS BLZ BOL BRA BRB CHL COL CRI DOM ECU
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dingel and Neiman National level 0.24 0.31 0.35 0.24 0.18 0.27 0.33 0.27 0.21 0.33 0.16 0.19
Saltiel National level 0.12 0.14 0.16 0.10 0.08 0.13 0.15 0.13 0.11 0.16 0.09 0.09
Male 0.09 0.13 0.12 0.07 0.07 0.10 0.11 0.10 0.09 0.14 0.10 0.07
Female 0.15 0.19 0.20 0.17 0.11 0.17 0.20 0.17 0.13 0.19 0.19 0.12
Aged 16-40 0.13 0.15 0.15 0.11 0.09 0.14 0.16 0.15 0.12 0.18 0.15 0.10
Age 41 and above 0.10 0.16 0.17 0.10 0.07 0.11 0.15 0.11 0.09 0.14 0.11 0.08
Not with partner 0.13 0.16 0.10 0.15 0.15 0.14 0.12 0.18 0.15 0.10
With partner 0.11 0.15 0.07 0.12 0.17 0.12 0.10 0.15 0.12 0.08
Below 9 years of education 0.05 0.07 0.05 0.03 0.06 0.06 0.05 0.04 0.08 0.06 0.03
Above 9 years of education 0.17 0.19 0.18 0.12 0.19 0.16 0.16 0.15 0.22 0.19 0.14
Rural 0.04 0.07 0.03 0.05 0.06 0.03 0.11 0.09 0.04
Urban 0.13 0.14 0.10 0.14 0.14 0.12 0.17 0.15 0.11
Informal 0.07 0.11 0.05 0.07 0.09 0.06 0.09 0.08 0.04
Formal 0.17 0.20 0.19 0.16 0.15 0.17 0.18 0.21 0.14
Size firm - Small 0.07 0.11 0.05 0.10 0.10 0.06 0.10 0.07 0.05
Size firm - Medium 0.14 0.17 0.16 0.15 0.14 0.14 0.18 0.19 0.10
Size firm - Large 0.17 0.22 0.17 0.16 0.16 0.19 0.22 0.21 0.17
Quintile total labour income - First 0.07 0.09 0.08 0.10 0.03 0.09 0.10 0.08 0.05 0.8 0.09 0.04
Quintile total labour income - Second 0.09 0.12 0.12 0.11 0.07 0.12 0.12 0.10 0.06 0.12 0.12 0.04
Quintile total labour income - Third 0.11 0.15 0.17 0.10 0.08 0.13 0.15 0.12 0.10 0.16 0.14 0.08
Quintile total labour income - Fourth 0.13 0.19 0.20 0.11 0.10 0.14 0.21 0.15 0.13 0.22 0.13 0.10
Quintile total labour income - Fifth 0.19 0.23 0.22 0.09 0.13 0.20 0.24 0.20 0.19 0.24 0.18 0.18

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table A.2 presents the share of individuals able to work from home along individuals’ characteristics. Argentina and the Bahamas only have

information for urban areas. This might lead to an overestimation of the share of jobs that can be done from home. When the information was not

available, we leave the cells as empty.

Table A.2. Share of Individuals Who Can Work from Home by Individual Characteristics
and by Country (Continued)

GTM HND JAM MEX NIC PAN PER PRY SLV TTO URY VEN
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

Dingel and Neiman National level 0.14 0.16 0.25 0.22 0.15 0.26 0.20 0.23 0.16 0.31 0.26 0.24
Saltiel National level 0.07 0.07 0.12 0.10 0.08 0.14 0.10 0.10 0.08 0.15 0.13 0.11
Male 0.05 0.05 0.08 0.09 0.08 0.13 0.08 0.08 0.07 0.10 0.10 0.08
Female 0.11 0.10 0.14 0.13 0.14 0.21 0.12 0.13 0.10 0.21 0.17 0.17
Aged 16-40 0.08 0.08 0.11 0.11 0.11 0.18 0.11 0.12 0.08 0.16 0.13 0.12
Age 41 and above 0.05 0.06 0.10 0.10 0.09 0.15 0.08 0.08 0.07 0.13 0.13 0.10
Not with partner 0.09 0.08 0.12 0.12 0.12 0.12 0.09 0.15 0.13
With partner 0.06 0.06 0.10 0.09 0.08 0.09 0.07 0.14 0.13
Below 9 years of education 0.04 0.03 0.05 0.05 0.04 0.06 0.03 0.04 0.04 0.06 0.05
Above 9 years of education 0.22 0.17 0.14 0.17 0.17 0.21 0.14 0.16 0.14 0.21 0.15
Rural 0.03 0.03 0.07 0.05 0.05 0.09 0.03 0.06 0.04 0.06
Urban 0.10 0.11 0.13 0.12 0.13 0.19 0.12 0.13 0.10 0.14
Informal 0.04 0.05 0.07 0.06 0.08 0.06 0.07 0.05 0.06 0.06
Formal 0.16 0.17 0.16 0.19 0.22 0.22 0.19 0.14 0.15 0.17
Size firm - Small 0.04 0.04 0.06 0.07 0.07 0.05 0.06 0.04 0.13 0.08 0.06
Size firm - Medium 0.10 0.11 0.15 0.14 0.19 0.12 0.15 0.10 0.12 0.13 0.11
Size firm - Large 0.12 0.19 0.17 0.14 0.23 0.22 0.18 0.15 0.17 0.19 0.18
Quintile total labour income - First 0.02 0.02 0.07 0.05 0.04 0.06 0.04 0.04 0.04 0.10 0.07 0.08
Quintile total labour income - Second 0.03 0.03 0.10 0.07 0.06 0.16 0.06 0.07 0.05 0.11 0.10 0.12
Quintile total labour income - Third 0.04 0.05 0.14 0.09 0.11 0.20 0.10 0.11 0.06 0.15 0.13 0.12
Quintile total labour income - Fourth 0.09 0.08 0.08 0.12 0.14 0.22 0.12 0.12 0.10 0.17 0.16 0.13
Quintile total labour income - Fifth 0.15 0.17 0.21 0.19 0.15 0.23 0.17 0.17 0.17 0.20 0.20 0.12

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.

Notes: Table A.2 presents the share of individuals able to work from home along individuals’ characteristics. When the information was not available, we

leave the cells as empty.
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Figure A.1. Share of Jobs Which Can Be Done from Home, by Country

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.1 provides the share of individuals who are able to work from home by country in Latin
America and the Caribbean. The red shaded countries have the lowest share of teleworkability (between
6.8 and 8.5%) while the green shaded countries have the highest share (between 13 and 16.2%). The white
shaded areas represent regions where no data was available.
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Figure A.2. Share of Jobs Which Can Be Done from Home in Argentina

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.2 presents the share of individuals who are able to work from home by regions in Argentina.
The red shaded regions have the lowest share of teleworkability (between 14 and 15%) while the green
shaded regions have the highest share (between 17 and 21.6%). Even though the percentage is low in
Buenos Aires (14%), it should be noted that the percentage is much higher for Ciudad de Buenos Aires
which is within the region of Buenos Aires (22%).

Figure A.3. Share of Jobs Which Can Be Done from Home in Bolivia

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.3 presents the share of individuals who are able to work from home by regions in Bolivia.
The red shaded regions have the lowest share of teleworkability (between 5.8 and 7.6%) while the green
shaded regions have the highest share (between 8.7 and 9.5%). The white shaded areas represent regions
where no data was available.
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Figure A.4. Share of Jobs Which Can Be Done from Home in Brazil

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.4 presents the share of individuals who are able to work from home by regions in Brazil.
The red shaded regions have the lowest share of teleworkability (between 9 and 11%) while the green
shaded regions have the highest share (between 12.9 and 18%).

Figure A.5. Share of Jobs Which Can Be Done from Home in Chile

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.5 presents the share of individuals who are able to work from home by regions in Chile.
The red shaded regions have the lowest share of teleworkability (between 9 and 10.7%) while the green
shaded regions have the highest share (between 13.2 and 15%).
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Figure A.6. Share of Jobs Which Can Be Done from Home in Colombia

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.6 presents the share of individuals who are able to work from home by regions in Colombia.
The red shaded regions have the lowest share of teleworkability (between 6.2 and 8.2%) while the green
shaded regions have the highest share (between 10.9 and 14%). The white shaded areas represent regions
where no data was available.

Figure A.7. Share of Jobs Which Can Be Done from Home in the Dominican Republic

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.7 presents the share of individuals who are able to work from home by regions in the
Dominican Republic. The red shaded regions have the lowest share of teleworkability (between 4.6 and
8.5%) while the green shaded regions have the highest share (between 12.3 and 20.5%).
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Figure A.8. Share of Jobs Which Can Be Done from Home in Ecuador

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.8 presents the share of individuals who are able to work from home by regions in Ecuador.
The red shaded regions have the lowest share of teleworkability (between 2.6 and 6.4%) while the green
shaded regions have the highest share (between 8.1 and 12.7%). The white shaded areas represent regions
where no data was available.

Figure A.9. Share of Jobs Which Can Be Done from Home in Guatemala

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.9 presents the share of individuals who are able to work from home by regions in
Guatemala. The red shaded regions have the lowest share of teleworkability (between 3.9 and 4.6%)
while the green shaded regions have the highest share (between 6.2 and 11%).
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Figure A.10. Share of Jobs Which Can Be Done from Home in Honduras

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.10 presents the share of individuals who are able to work from home by regions in
Honduras. The red shaded regions have the lowest share of teleworkability (between 3.9 and 4.5%) while
the green shaded regions have the highest share (between 6 and 11%). The white shaded areas represent
regions where no data was available.

Figure A.11. Share of Jobs Which Can Be Done from Home in Jamaica

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.11 presents the share of individuals who are able to work from home by regions in Jamaica.
The red shaded regions have the lowest share of teleworkability (between 4.7 and 7.6%) while the green
shaded regions have the highest share (between 10.1 and 15.6%).
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Figure A.12. Share of Jobs Which Can Be Done from Home in Mexico

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.12 presents the share of individuals who are able to work from home by regions in Mexico.
The red shaded regions have the lowest share of teleworkability (between 6.6 and 8.4%) while the green
shaded regions have the highest share (between 11 and 15.7%).

Figure A.13. Share of Jobs Which Can Be Done from Home in Panama

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.13 presents the share of individuals who are able to work from home by regions in
Panama. The red shaded regions have the lowest share of teleworkability (between 3 and 7.6%) while the
green shaded regions have the highest share (between 15 and 18.7%). The white shaded areas represent
regions where no data was available.
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Figure A.14. Share of Jobs Which Can Be Done from Home in Peru

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.14 presents the share of individuals who are able to work from home by regions in Peru.
The red shaded regions have the lowest share of teleworkability (between 4.1 and 6.1%) while the green
shaded regions have the highest share (between 9.5 and 14%).

Figure A.15. Share of Jobs Which Can Be Done from Home in Paraguay

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.15 presents the share of individuals who are able to work from home by regions in Paraguay.
The red shaded regions have the lowest share of teleworkability (between 5.9 and 6.7%) while the green
shaded regions have the highest share (between 12.4 and 16.6%). The white shaded areas represent regions
where no data was available.
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Figure A.16. Share of Jobs Which Can Be Done from Home in El Salvador

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.16 presents the share of individuals who are able to work from home by regions in El
Salvador. The red shaded regions have the lowest share of teleworkability (between 5.3 and 5.5%) while
the green shaded regions have the highest share (between 7.1 and 10.5%).

Figure A.17. Share of Jobs Which Can Be Done from Home in Uruguay

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.17 presents the share of individuals who are able to work from home by regions in Uruguay.
The red shaded regions have the lowest share of teleworkability (between 8.5 and 9.2%) while the green
shaded regions have the highest share (between 11 and 17%).
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Figure A.18. Share of Jobs Which Can Be Done from Home in Venezuela

Source: Harmonized Household Surveys of Latin America and the Caribbean, authors’ own calculations.
Notes: Figure A.18 presents the share of individuals who are able to work from home by regions in
Venezuela. The red shaded regions have the lowest share of teleworkability (between 8.5 and 10%) while
the green shaded regions have the highest share (between 11.4 and 15.7%).
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