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Motivation

 Basically methodological, seeking to combine data-driven and
model-driven approach to assess evolution (Ahumada et al,
April 10, 2020)

* Most likely hypothesis: “cicles/waves/stages” of unknown
emergence, magnitude, duration due to uncertainty along with
mitigation and social response (best shown in Moore et al, April
30 2020) until a vaccine arrives.

* Short term forecast of new cases (Castle et al, March 19, 2020)
with a stochastic trend (like a “weather forecast” model). A
dynamic forecasting approach with no reference to
epidemiological model parameters.

* Arival forecasting model would come from a non-linear estimation of
an epidemiological model (eg Batista, January 2020)

e Alternative to non-linear estimation: Take-off/Flat-out
estimation with a “linearized” static (OLS, Poisson) estimation of
the contagion rate of a SIR model (Harris, March 30 2020). Not
for forecasting but linked to epidemiological model parameters

e Contribution: We propose a short term forecast strategy of
cases and deaths but related to parameters of a SIRD model.



Motivation

* Critical dimensions to distinguish: Short-Term, Data-Driven,
Model-Related, Parameter/Distribution Shifts.

* Uncertainty of process suggests short term/data driven, policy
dialogue suggests model related. Estimation by saturation
techniques to accommodate shifts essential (Hendry, 2000; 2020)

* Some epidemiological models (Imperial College, 2020) do
perform short-term forecasts for many countries, with
errors. Some overestimation of deaths for Argentina, so far.

* Medium range models (IHME, 2020) or Gompertz-(logistic)
curve models forecasts do not survive to shifts and need
re-estimation. IHME on Argentina: scary, 28k deaths 1/11

 Dialogue with economic+epidemilogical models (Alvarez et
al, 2020; Garriga et al, 2020; Acemoglu et al, 2020;
Gonzalez Eiras and Niepelt, 2020) as they are source of
several insights and effects, we add to parameters choices
from observed data.
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simple SIRD model
* Kermack and McKendrick (1927); Heathcote (2000)

* Four differential equations where a susceptible group S,
within a population of size N, is being affected by a
contagious disease giving rise to a group |, of infected
individuals that as the disease progresses lead to R,
recovered and to D, deaths. By definition N.=S,+I.+R+S,
and C=I+R+D.

* Equations illustrate the transitions from S, to I, to R, and D,
which are governed by an infection rate a, a recovery rate
B and death ratey.

e S, = —al, S;/N (1)
Iy = al, Sy /N — Bl — vyl (2)
* R, = BI, (3)

* Dt = yl; (4)



Getting (a, B, v)

* Parameters (a, B, v) used to compute or simulate the
evolution of the variables from given initial conditions,
from epidemiological studies.

* In correspondence are associated values of the initial
(Ry=0a/B) and effective (R,) reproduction numbers

e But many different forms to estimate R (Aronson et al,
2020; Biggerstaff et al, 2014; Delamater et al, 2020) make
cross comparisons tricky. Own evolution of a given form
preferable reference.

* Alternatively, parameters of (1) to (4) may be estimated
from observed data, given the observable nature of C,
(=1.+R,) and D..

* From an econometric perspective there are two ways to
proceed with this estimation.



Econometric estimation

* The first one is to use non-linear square methods, as done in
Batista (2020) and Castle et al (2020).

* A second alternative, as shown in Harris (2020), is to derive a
linearized form of the log of daily cases AC, in order to
estimate (by OLS or Poisson regression) the rate of infection a
and the R, (for assumed values of B).

* This method is quite useful to measure the start-up of the
disease transmission and test for the flattening of the curve
(as represented by the break in the logAC, linear trend) as a
result of lockdowns.

* This requires a sufficient number of observations. Beyond that
point, given the structural break, the estimated a or R, is
adjusted to the data but in a different stage to be defined.

* |f a new stage or wave of the contagious process were to
occur, a new testing will have to be performed (expost) once
enough data is available to adjust the parameters.



“Linearized” estimation of a

* C, observed cases

Initial Doubling Time = 1.3 days Ct=|t+Rt+Dt
e C=al = oC (at"0")
e C; = Iyexp(at)
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Figure 1. New Reported COVID-19 Cases per Day in New York City (Logarithmic Scale). Best-fit trend line
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Argentina up to April 15 in Ahumada et al (2020)

Argentina & Spain COVID-19
Logarithm of daily new cases since beginning of episode
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Short term forecast of observed cases

e Starting from equation (2) and using definitions and
equations (3) and (4) above we can write I, + (8 + y)I, =
I, + R, + D, = C; = I, S;/N. Thus, the growth rate of
observed cases relates to the infectious rate parameter a as,

AlogC, = < = ItS/N 5
* A short term (eg weekly) forecast of AlogC; is consistent
with a forecasted value of a given the relative stability of
the computed values of the ratios I/C and S/N over the

period.

* It also relates to a forward looking doubling time value of
cases, given by approximation by log(2) /log(1 + AlogC;)



Short term forecast of R,

* An implicit value of the forecasted effective reproduction
rate R, =(a/B) (S,/N) can be obtained from (5) using the
forecast of AlogC, as an input and using values for (B) taken
from epidemiological studies

_(AlogCy) Ce/ 1
R, = 3

(6)

* The inverse of B ranges from 3 days (Castro, 2020, for
simulations in Argentina); 6.5 days (Harris, 2020, based on
Ferguson et al, 2020); 10 or 11 days (Wolfel et al, 2020;
NCID, 2020) and to 18 (or more) days (most of the
economics papers are based on Atkeson, 2020 which
estimate is based on Wang et al, 2020).



Short term forecast of deaths

* From equation (4) and using (5) we can derive the following
relation between the rate of growth of observed deaths and

observed cases,
AlogD De _vGCeN AlogC (7)
ogl: = Dt ~aD,s, 0gLl¢
* Lags should be expected but here are assumed away due to
the simple model

* Non-linear effects of I, on D, to capture likely congestion
problems in the health system (eg Alvarez et al, 2020) have
been well documented at the dramatic startups of Italy and
Spain.

e Estimates of y can be obtained from (7) given an estimated
relation between D and C, and the estimate of a



Mobility to capture the effect of NPI

* The effectiveness of NPl such as lockdowns are captured by
a quadratic expression (1 — L)% which corresponds to a
guadratic matching model specification (Alvarez et al, 2020)
where L is the degree of the lockdown and 6 an unknown

parameter capturing effectiveness, with L < L denoting an
upper bound to the lockdown.

* This term enters equation (2) to affect the value of the
infection rate a and is easily introduced in the RHS of
equation (5) or in the denominator of equation (6).

* For empirical purposes it can be approximated by a mobility
indicator M ( https://www.google.com/covid19/mobility/).

* Mobility indicators are important candidates to model an
observed case equation for forecasting purposes, as the
effect of changes in M will have a lagged impact on cases.



https://www.google.com/covid19/mobility/

Performance representation for Argentina

_ Figure 1 COVID Performance in Argentina & Spain:
10 1 Logarithm of daily new cases since beginning of episode
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CABA as an illustration

Figure 2 COVID-19 Daily New Cases in Logarithmic Scale in CABA
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Mobility in CABA

Figure 3. Mobility indicators in Argentina and Buenos Aires City
Google mobility indicator average 01/2020=100
February 15 to June 7 2020
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Death performance
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Figure 4: Argentina and Chile Daily COVID-19 Deaths since beginning of
episode and forecast for July 8 from Imperial College (2020b)
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CABA: Gompertz rate vs. actual rate

* This figure shows what would be a single peaked process
with one significant wave with a monotonically
decreasing growth rate compared with actual CABA data

Figure 5

Gompertz curve ( ALGompertz) and actual daily growth rate of observed cases (ALC)
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Short-term forecasts of reported cases and
deaths in CABA

* We focus on the model ability to forecast these series to follow the
disease evolution.

* Comparing ex-post forecasts and actual data (using pseudo out-of
samples) can help to improve models, and thus ex- ante forecasts of
these key series, in addition to quantify statistical uncertainty.

* An thus establish the connection between short-term forecasts
with parameters and indicators of a SIRD model.

* Short run (a week-ahead) forecasts can be done by estimating simple
statistical dynamic models but that allow updating and/or rapid break
detection.

* This is necessary to follow the disease evolution due to different policy
interventions as the degree of lockdowns and their effectiveness

* And sudden shocks which could derive in a contagion process
acceleration as the observed in the poor-neighborhoods of the city.



Forecasts approach: dummy saturation and
robustification

* To deal with policy interventions and sudden shocks we applied step
saturation and impulse saturation to take into account shifts and
outliers in the models.

* Impulse saturation (of the form 0,0,0, ...,1, ... 0) and step saturation
(1,1,1,...,0, 0, 0) are part of an econometric approach that searches for
the presence of these dummies for every observation of a given sample.
Data themselves are informative about the dummy type and location.
Initially developed by Hendry (1999) through sample partitions, this
dummy selection approach is part of the Autometrics algorithm
(Doornik, 2009) that allows to estimate models with more variable than
observations. See also Ahumada (2018)

* They are essential for our purpose to detect changes in the contagion
dynamics that can be informative about transitions between stages.

* Also robust forecasts are meantime needed to rapidly adjust our ex-
ante forecasts (see Castle et. al, 2015).



The lockdown effect on CABA reported
cases in April

ALC_CABA = - 0.173*ALC_CABA_2 + 0.0466 + 0.13*S5:03-27 + 0.0438*5:04-05

(SE) (0.061) (0.0052) (0.013) (0.0093)
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AR 1-2 test: F(2,35) = 0.66748 [0.5194]
ARCH 1-1test: F(1,41) = 0.01596[0.9001]
Normality test: Chi*2(2)= 2.4514 [0.2936] e er— T B
Hetero test: F(6,35) = 0.48015 [0.8185] 0.075F 1) P s
RESET23 test: F(2,35) = 0.66785 [0.5192] o
0.050f : l/
Figure 6 /"—“\___\ \ [ ot T - L
Actual and fitted daily growth rates of reported COVID-19 cases in CABA ; /\M 1/
0.025}
OBF [—— ALC CABA — Fined] | ‘
0.40F 20-4-14 4-21 28 5.5
1750
0.35F So—. Eor%gsts ——— C_CABA
1500
030
02sf 1250
0.20F { / 1000
01sf !‘! 750F -
0.10F ' . 20-4-14 321 328 55
0.05F L/ [ A\ . EN
V AN N T A
20-3-17 324 331 37 Ry a2 328

21



Second wave: May performance after the
outbreak in poor neighborhoods

Figure 8 Figure 9

Robust forecasts of daily growth rates (upper panel) and levels (lower level)

7 day-ahead forecasts of daily growth rates (upper panel) and levels (lower level) of
of reported COVID-19 cases in CABA- May 7 to May 13, 2020

reported COVID-19 cases in CABA- May 11 to May 17, 2020
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Testing Mobility effects

ALC CABA = 0.152°ALC CABA_3 + 0.0703"LMobilCABAad]_8 - 0.014*dweekday1+7

(SE) (0.07) (0.012) (0.0042)
-0.214 + 0.0439751:04-05 - 0.0153751:05-05 + 0.028675105-25 (12)
(0.044) (0.0083) (0.0051) (0.0059)

sigma = 0.0154 Adj.R"2= 0.722

no. of observations = 71 (from March 27 to June 05)

AR 1-2 test: F(2,60) = 0.34462 [0.7099]
ARCH 1-1 test: F(1,69) 0.38095 [0.5391]
Normality test: Chi*2(2)= 2.8439 [0.2412]
Hetero test: F(8,60) 1.7763 [0.0997]
Hetero-X test: F(9,59) 1.5869 [0.1403]
RESET23 test: F(2,60) = 7.6782[0.0011]**

The 15 point increase in the Mobility Index between March
20 and the end of May (ie from 25 to about 40) added a
3.4% increase in the daily growth rate of cases, that is it
explains about 75% of the rate of growth (4.5%) observed at

the end of our sample.
23



Forecasting COVID-19 deaths in CABA

ALDeathsCABA = - 0.154*ALDeathsCABA_6 - 0.1 75*A2LDeathsCABA 3 + 0.501*ALC_CABA_16

(SE) (0.052) (0.035) (0.081)
+0.47*ALC_CABA_19 - 0.0312%51:04-23 + 0.0376*S1:05-08
(0.08) (0.011) (0.0084)
- 0.0143 + 0.0185*S1:05-27 - 0.0248*dweekday7 (13)
(0.009) (0.0097) (0.0088)

sigma = 0.0238 R”"2 =0.859
no. of observations = 62 (from April 5 to June 5)

Figure 11
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ARCH 1-1 test- F((1,60)) = 0.097826 {0_75 55% 7 day-ahead forecasts of daily growth rates (upper panel) and levels (lower level) of
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How close to a plateau of cases in CABA?
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Update: Latest forecasts of cases
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Conclusions

* Short term forecasting of cases and deaths may become more
useful than thought because of uncertain waves of infection
given that the final position of the pandemic cannot be forecast
with accuracy.

 We show that short term forecasts of the rate of growth of cases
and deaths of COVID-19 can be done in a way that it relates to
key parameters of the SIR model.

* As richer data sets allow, the approach can accommodate
heterogeneity across areas and groups, mobility and spatial
interactions, and the performance of the health system.

* Rol of testing/tracing/isolation strategy seems also important to
assess in the future

* An empirical illustration to CABA shows that the process is
indeed uncertain, subject to shifts and requires short term
monitoring.

* Two empirical results are important in our application to CABA.
First, we find that mobility has an impact on reported cases with
an 8-days lag and a semi-elasticity of 0.07. Second we find a lag
between reported cases and deaths of 16 to 19 cases.



